Francesca Monti
- 12 August 2020
- WORKING PAPER SERIES - No. 2453Details
- Abstract
- Monitoring economic conditions in real time, or nowcasting, is among the key tasks routinely performed by economists. Nowcasting entails some key challenges, which also characterise modern Big Data analytics, often referred to as the three \Vs": the large number of time series continuously released (Volume), the complexity of the data covering various sectors of the economy, published in an asynchronous way and with different frequencies and precision (Variety), and the need to incorporate new information within minutes of their release (Velocity). In this paper, we explore alternative routes to bring Bayesian Vector Autoregressive (BVAR) models up to these challenges. We find that BVARs are able to effectively handle the three Vs and produce, in real time, accurate probabilistic predictions of US economic activity and, in addition, a meaningful narrative by means of scenario analysis.
- JEL Code
- E32 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Business Fluctuations, Cycles
E37 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Forecasting and Simulation: Models and Applications
C01 : Mathematical and Quantitative Methods→General→Econometrics
C33 : Mathematical and Quantitative Methods→Multiple or Simultaneous Equation Models, Multiple Variables→Panel Data Models, Spatio-temporal Models
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods