
WORK ING  PAPER  SER I E S
NO 1384  /  OCTOBER  2011

by Pierre Guérin,
Laurent Maurin
and Matthias Mohr

TREND-CYCLE 
DECOMPOSITION OF 
OUTPUT AND EURO 
AREA INFLATION 
FORECASTS

A REAL-TIME 
APPROACH BASED ON 
MODEL COMBINATION



1   We would like to thank, without implicating in any way, Helmut Luetkepohl and Massimiliano Marcellino for useful comments on a previous draft. 

Part of the paper was written while the first author was an intern at the European Central Bank, whose hospitality is gratefully acknowledged.

2   European University Institute and International Economic Analysis Department, Bank of Canada, 234 Wellington Street, Ottawa,
Canada, K1A 0G9; e-mail: pguerin@bankofcanada.ca

3   European Central Bank, Kaiserstrasse 29, D-6031, Frankfurt am Main, Germany; e-mails: laurent.maurin@ecb.europa.eu 

and matthias.mohr@ecb.europa.eu

This paper can be downloaded without charge from http://www.ecb.europa.eu or from the Social Science 
Research Network electronic library at http://ssrn.com/abstract_id=1932227.

NOTE: This Working Paper should not be reported as representing 
the views of the European Central Bank (ECB). 
The views expressed are those of the authors 

and do not necessarily reflect those of the ECB.

WORKING  PAPER  SER IES
NO 1384  /  OCTOBER  2011

TREND-CYCLE DECOMPOSITION 

OF OUTPUT AND EURO AREA 

INFLATION FORECASTS

A REAL-TIME APPROACH BASED 

ON MODEL COMBINATION 1

by Pierre Guérin 2, Laurent Maurin 3, 
and Matthias Mohr 3

In 2011 all ECB
publications

feature a motif
taken from

the €100 banknote.



© European Central Bank, 2011

Address
Kaiserstrasse 29
60311 Frankfurt am Main, Germany

Postal address
Postfach 16 03 19
60066 Frankfurt am Main, Germany

Telephone
+49 69 1344 0

Internet
http://www.ecb.europa.eu

Fax
+49 69 1344 6000 

All rights reserved. 

Any reproduction, publication and 
reprint in the form of a different 
publication, whether printed or produced 
electronically, in whole or in part, is 
permitted only with the explicit written 
authorisation of the ECB or the authors.

Information on all of the papers published 
in the ECB Working Paper Series can be 
found on the ECB’s website, http://www.
ecb.europa.eu/pub/scientific/wps/date/
html/index.en.html

ISSN 1725-2806 (online)



3
ECB

Working Paper Series No 1384
October 2011

Abstract 4

Non-technical summary 5

1 Introduction 6

2 Trend-cycle decomposition of output 7

2.1 Extension to regime changes 
in the slope of the trend 8

2.2 Extension to use auxiliary information 9

2.3 Extension to incorporate a time-varying 
Phillips curve 10

3 In-sample estimates for the euro area 11

3.1 Time-varying Phillips curve 12

3.2 Univariate and bivariate trend-cycle 
decomposition of euro area real GDP 14

3.3 Comparison of estimated output gaps 
and model-averaged measures 15

4 Do real-time estimates of the output gap 
improve infl ation forecasts? 17

4.1 Real-time estimates of the output gap 18

4.2 Infl ation forecasts 19

5 Concluding remarks 23

References 24

Appendices 26

CONTENTS



4
ECB
Working Paper Series No 1384
October 2011

Abstract

The paper focuses on the estimation of the euro area output gap. We construct
model-averaged measures of the output gap in order to cope with both model un-
certainty and parameter instability that are inherent to trend-cycle decomposition
models of GDP.

We first estimate nine models of trend-cycle decomposition of euro area GDP, both
univariate and multivariate, some of them allowing for changes in the slope of trend
GDP and/or its error variance using Markov-switching specifications, or including a
Phillips curve. We then pool the estimates using three weighting schemes.

We compute both ex-post and real-time estimates to check the stability of the
estimates to GDP revisions. We finally run a forecasting experiment to evaluate the
predictive power of the output gap for inflation in the euro area.

We find evidence of changes in trend growth around the recessions. We also
find support for model averaging techniques in order to improve the reliability of
the potential output estimates in real time. Our measures help forecasting inflation
over most of our evaluation sample (2001-2010) but fail dramatically over the last
recession.

Keywords: Trend-cycle decomposition, Phillips curve, Unobserved components
model, Kalman Filter, Markov-switching, Auxiliary information, Model averaging,
Inflation forecast, Real-time analysis.

JEL Classification Code: C53, E32, E37.
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Non-technical summary

The estimation of potential output is of primary importance for policy makers since it
represents the maximum level of output not associated with inflationary pressures. The
output gap - i.e. the difference between the actual level of output and the potential output
- conveniently summarizes the transitory state of the economy by determining whether the
economy operates below or above its sustainable level.

The outbreak of the financial crisis and the following economic recession opened a
sizeable negative output gap. However, the standard measures of the output gap are
usually associated with a considerable level of uncertainty due to both model uncertainty
and parameter instability. Model uncertainty means that model selection is a tricky issue
since the level of the output gap is not observed and parameter instability means that
parameter estimates can be sensitive to the estimation window chosen.

Therefore, in this paper we estimate several trend-cycle decomposition models of the
output gap. This class of model decomposes the output in between a trend (i.e. the po-
tential output) and a cycle (i.e. the output gap) using the Kalman filter. In particular,
we estimate nine different models of the output gap: univariate and multivariate, linear
and non-linear. We model non linearities in the trend equation of output with parameter
changes governed by a Markov chain. This allows us to investigate whether strong eco-
nomic downturns affect the trend of potential output. In this way, we can also estimate
the probabilities of changes in the slope of potential output. We also use two classes of
multivariate models: (i) a bivariate model with an equation for an indicator well correlated
to the economic activity and (ii) a bivariate model with a Phillips curve since inflation is -
in theory - linked to the size of the output gap.

To cope with both model uncertainty and parameter instability that are inherent to
trend-cycle decomposition models of the output gap, we construct model-averaged measures
of the output gap. We also investigate the impact of revisions on the estimates of the output
gap and run a pseudo real-time estimation exercise. We find that our model-averaged
measures reduce the uncertainty surrounding the estimates of the output gap with respect
to their individual estimates counterparts.

We finally run a forecasting experiment to assess the predictive power of our output gap
measures for forecasting inflation. We use two different evaluation samples: 2001Q1-2007Q4
and 2001Q1-2010Q4 to study the impact of the last recession on our results. We also use
both ex-post and real-time estimates of the output gap and test statistically whether the
forecasts based on our output gap measures outperform a standard autoregressive model
for inflation. We find that the predictive power of the real-time estimates of the output gap
for inflation is limited, whereas the ex-post estimates of the output gap marginally improve
the forecasting performance with respect to their real-time counterparts. In addition, we
find that the performance of the output gap for predicting inflation considerably failed over
the last recession.

Overall, we find evidence of changes in trend growth around the recessions. We also find
support for model averaging techniques in order to improve the reliability of the potential
output estimates in real time.
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1 Introduction

The estimation of potential output is of primary importance for policy makers since it
represents the maximum level of output not associated with inflationary pressures. The
output gap - i.e. the difference between the actual level of output and the potential output
- conveniently summarizes the transitory state of the economy by determining whether the
economy operates below or above its sustainable level.

Unobserved components (UC) models are often used to measure potential output since
they are specifically designed to deal with latent (i.e. unobserved) variables. Univariate
trend-cycle decomposition model of real GDP can be traced back to Watson (1986) and
Clark (1987). These studies, which focus on the US economy, find that the cyclical part
of output closely matches the US recessions identified by the NBER. Indeed, they allocate
most of the variation of output to the cycle and leave the trend mostly unchanged over
time. Conversely, the Beveridge and Nelson (1981) (BN) decomposition of GDP attributes
most of its variability to its trend, whereas its cyclical component remains small, noisy and
does not match the NBER business cycle dating of economic activity.

Morley et al. (2003) explain the discrepancy between the BN and UC decompositions
by the fact that it is usually assumed in the literature that there is no correlation between
the shocks to the trend and the cycle. The authors find that relaxing this restriction makes
the UC decomposition of GDP identical to the BN decomposition. Moreover, they report
a negative and significant correlation between the shocks to the trend and to the cycle.

Conversely, Perron and Wada (2009) emphasize the importance of allowing for a change
in the slope of the trend. They model the shocks to the trend and cycle as a mixture of two
normal distributions that permits to capture endogenously changes in the slope of trend
GDP. In doing so, they identify a structural break in the slope of the trend of US real
GDP around 1973:Q1 and obtain a cycle component of GDP that is consistent with the
NBER dating of the economic activity. In this paper, we extend this approach and propose
to capture changes in the slope of trend GDP with regime switches in the slope and the
variance of the error.

The Markov-switching model of Hamilton (1989) is appealing since it makes the prob-
ability of parameter changes dependent on past realizations, whereas assuming that the
errors of the state follow a mixture of normal distributions (i.e. the approach followed by
Perron and Wada (2009)) implies that the probabilities that the errors are drawn from
one regime to the other are independent from past realizations. In this respect, adopting
a Markov-switching specification implies that, unlike Perron and Wada (2009), we allow
for a change in trend growth to last several quarters while remaining short-lived, and to
happen more than once.

To cope with model uncertainty inherent to trend-cycle decomposition and Markov-
switching models, we also incorporate additional information to improve the estimation of
the output gap. First, we consider the use of an auxiliary indicator - the rate of capacity
utilisation - to help identifying the transitory component of GDP. Given the high correlation
between this indicator and the business cycle component of economic activity, we can expect
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that it improves the estimation of the output gap. Second, we add a Phillips curve to the
trend cycle decomposition model of GDP. The use of a Phillips curve for estimating the
output gap has been first advocated by Kuttner (1994). The author appends a Phillips
curve to a univariate trend-cycle decomposition of GDP and finds that this bivariate model
helps to better estimate the output gap.

The estimation of the output gap is characterized by both model uncertainty and pa-
rameter instability. Model uncertainty means that model selection is a tricky issue since
we do not observe the true level of the output gap, while parameter instability refers to
the idea that parameter estimates can be sensitive to the estimation window chosen. As a
consequence, the output gap estimates are surrounded by a large uncertainty. One solution
consists in reporting predictive densities of the output gap (see e.g. Garratt et al. (2009)).
Another solution is to compute model-averaged measures of the output gap in order to
reduce model uncertainty (see e.g. Morley and Piger (2009)).

Another issue pointed out by Orphanides and Van Norden (2002) is the unreliability of
the estimates of output gap in real-time. However, Marcellino and Musso (2010) find that
the use of real-time data is less problematic to estimate the euro area output gap.

We estimate nine models of the euro area output gap: linear, non-linear, univariate and
bivariate models. We then report model-averaged measures of the output gap with their
single model counterparts and show that the differences across estimates are sizeable. We
find some evidence of regime changes in the slope of the trend of the euro area GDP for
few periods, around 1974 and since 2008. We then run a pseudo out-of-sample forecasting
experiment to forecast the level and the change in inflation using both ex-post and real-
time estimates of the output gap. We find that our output gap measures help forecasting
inflation over most of the sample but fail dramatically since the last recession. We also find
support for model averaging techniques in order to improve the reliability of the potential
output estimates in real time.

The paper is organized as follows. Section 2 presents the univariate and multivariate
models of trend/cycle decomposition of GDP with and without regime switching. Section
3 discusses the estimation method and reports the empirical results for the euro area. In
this section, we also discuss the estimation of a univariate time-varying Phillips curve. The
estimation of the output gap in real-time and its forecasting performance for predicting
inflation in the euro area is analysed in Section 4. Section 5 concludes. Four appendices
complete the paper.

2 Trend-cycle decomposition of output

In this section, we present the models used to decompose GDP in between trend and
cycle. We start with the univariate model, discuss the inclusion of Markov-switching pa-
rameters and then present the bivariate models.

Watson (1986) provides a starting point to decompose the level of output yt into a trend
nt and a cycle zt:

yt = nt + zt (1)
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The trend nt is modeled as a random walk with drift and the cyclical component zt is
modeled as an AR(2) process:

nt = µ+ nt−1 + εnt (2)

zt = φ1zt−1 + φ2zt−2 + εzt (3)

The disturbances εnt and εzt are assumed to be normally distributed, i.i.d, with mean-zero
and are not correlated. The trend component nt is interpreted as the level of potential
output, while the cycle zt is interpreted as the output gap. This model is relatively standard
in the literature and can be cast in state-space form, with a state vector of dimension 3
(see Appendix A for the measurement and state equations).

2.1 Extension to regime changes in the slope of the trend

To extend the standard model, we consider regime changes in the intercept of the trend
component µ and in the variance of the shock εnt using regime switches governed by a
Markov chain. This allows trend growth to be regime dependent. The general Markov-
switching model we consider is:

yt = nt + zt (4)

nt = µ(St) + nt−1 + εnt (St) (5)

zt = φ1zt−1 + φ2zt−2 + εzt (6)

where εnt |St ∼ NID(0, σ2
n(St)) and εzt ∼ NID(0, σ2

z)

The regime generating process is an ergodic Markov chain with a finite number of states
St = {1, ...,M} defined by the following transition probabilities:1

pij = Pr(St+1 = j|St = i) (7)

M∑
j=1

pij = 1∀i, jε{1, ...,M} (8)

Regime changes in the intercept µ of the trend component can occur following a decline
in productivity due to unemployment hysteresis or stronger scrapping of capital during
recessions associated with a restructuring of the economy. Similarly, changes in the variance
of shocks to trend GDP can be attributed to stronger shocks affecting the economy during
recessions. For example Cogley and Sargent (2005), Sims and Zha (2006) and Fernández-
Villaverde et al. (2010) emphasize the importance of allowing the variance of the shocks to
vary. The prior view is that low growth is associated with large negative shocks. In the set
of models estimated below, we consider both changes in the slope together with changes in
the variance of the shocks.2

1See Hamilton (1989) for more details.
2Models with only switches in the variance of the innovations have also been estimated. They are not

retained in the paper as likelihood ratio tests do not favor them.
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As the level of potential output nt and the output gap zt are not observed, the model
has to be cast in state-space form before being estimated with the Kalman filter. The
inclusion of regime changes in some parameters of the model complicates the estimation
since there is an additional latent variable St. However, Kim and Nelson (1999b, chapter
5) show how to estimate state-space models with regime switching, i.e. how to combine
the Kalman and Hamilton filters in a tractable way. Further details about the estimation
are provided in Section 3.1, while Appendix B reports the equations for the Kalman and
Hamilton filters.

It is important to note that we only include regime changes in some parameters of the
trend equation of GDP since we want to capture possible changes in the level of potential
output. Conversely, Kim and Nelson (1999a) include regime switches in the intercept of
the cycle equation of GDP and Sinclair (2009) extends their specification by allowing for a
correlation between the errors in the trend and the cycle.

In the empirical application, the linear model given by equations (1) to (3) is labeled
as MODEL UC-1, the Markov-switching model with only a switch in the intercept of the
trend component of GDP is labeled as MODEL UC-2 and the Markov-switching model
with a switch in both the drift of the trend component of GDP and its shock variance is
labeled as MODEL UC-3.

2.2 Extension to use auxiliary information

Beside the three univariate models described above, we also consider the use of an
auxiliary indicator to better estimate the output gap. In the empirical application, the
indicator is the rate of capacity utilisation which is often used as a proxy for the cyclical
component of GDP. Indeed, if one considers the output gap as the transitory component
of GDP, appending an indicator well correlated to the economic activity should provide
relevant information for estimating the output gap.

The measurement and transition equations for the bivariate model with GDP and the
auxiliary indicator are then respectively given by:

[
yt
auxt

]
=

[
1 1 0
0 α1 α2

] nt
zt
zt−1

+

[
0
εauxt

]
(9)

 nt
zt
zt−1

 =

µ(St)
0
0

+

1 0 0
0 φ1 φ2

0 1 0

nt−1zt−1
zt−2

+

εnt (St)
εzt
0

 (10)

where εauxt ∼ NID(0, σ2
aux), ε

n
t (St) ∼ NID(0, σ2

n(St)), ε
z
t ∼ NID(0, σ2

z) and εκt ∼
NID(0, σ2

κ).

We consider linear bivariate models (labeled as MODEL MUC-1 (auxiliary)). For the
non-linear bivariate models we estimate, we include regime changes in the parameters of
the trend equation of GDP in the same way as the univariate modeling: (i) switch in the
slope of the trend only (labeled as MODEL MUC-2 (auxiliary)) or (ii) switch in both the
slope of the trend and its shock variance (labeled as MODEL MUC-3 (auxiliary)).
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2.3 Extension to incorporate a time-varying Phillips curve

We follow Kuttner (1994) and add an equation for inflation along with the trend-cycle
decomposition of GDP. We can indeed expect gains by adding an inflation equation to our
model since - in theory - inflation is linked to the level of the output gap. Although it is
indeed sometimes found that inflation can help to estimate the transitory component of
output (see e.g. Kuttner (1994) and Proietti et al. (2007)), there is no clear agreement in
the literature. For instance, based on US data, Orphanides and Van Norden (2002) find
that multivariate models do not outperform their univariate counterparts.

An additional problem with the Phillips curve specification relates to the well known
fact that over the forty years covered in our empirical analysis, the inflation regime has
changed. To account for this, we use a time-varying version of the Phillips curve, which
is then incorporated in the model of trend-cycle decomposition of GDP. We consider a
time-varying Phillips-curve of the form:

πt = κt +
J∑

j=1

λπ,jπt−j +
J∑

j=0

λz,jzt−j +
J∑

j=1

λEXR,jEXRt−j +
J∑

j=1

λOIL,jOILt−j + επt (11)

κt = κt−1 + εκt (12)

where επt ∼ NID(0, σ2
π), ε

κ
t ∼ NID(0, σ2

κ) and πt, zt, EXRt and OILt are the inflation
rate, the cyclical component of output,3 the nominal effective exchange rate and the price
of oil respectively. The intercept κt is modeled as a random walk without drift in order
to capture changes in the trend of inflation and can be interpreted as the level of medium
term inflation. The other parameters of the model (λ′s, σ2

κ and σ2
π) are kept constant.

Again, as the parameter κ is not constant over time, equations (11) and (12) have to be
estimated via maximum likelihood using the Kalman filter. The state-space representation
of this model is given by:

πt = κt + λxt + επt (13)

κt = κt−1 + εκt (14)

where xt is a matrix of observables and λ its corresponding vector of coefficients.

The measurement and transition equations for the bivariate model of GDP and inflation
are instead respectively given by:

[
yt
πt

]
=

[
1 1 0 0
0 λz 0 1

]
⎡
⎢⎢⎣

nt

zt
zt−1
κt

⎤
⎥⎥⎦+

[
0 0
0 λ

] [
0
xt

]
+

[
0
επt

]
(15)

3We use here the HP filtered cycle as a proxy for the cyclical component of output.
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where xt is a matrix of explanatory variables and λ its corresponding vector of coefficients.

⎡
⎢⎢⎣

nt

zt
zt−1
κt

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
μ(St)
0
0
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
1 0 0 0
0 φ1 φ2 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
nt−1
zt−1
zt−2
κt−1

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
εnt (St)
εzt
0
εκt

⎤
⎥⎥⎦ (16)

where εauxt ∼ NID(0, σ2
aux), εnt (St) ∼ NID(0, σ2

n(St)), εzt ∼ NID(0, σ2
z) and εκt ∼

NID(0, σ2
κ).

We consider linear bivariate models labeled as MODEL MUC-1 (inflation). For the
non-linear bivariate models we estimate, we include regime changes in the parameters of
the trend equation of GDP in the same way as the univariate modeling: (i) switch in the
slope of the trend only (labeled as MODEL MUC-2 (inflation)) or (ii) switch in both the
slope of the trend and its shock variance (labeled as MODEL MUC-3 (inflation)).

3 In-sample estimates for the euro area

The estimation of the nine models described above is carried out using quarterly data
for the euro area as a whole over the period 1970Q1-2010Q4 (i.e. 164 observations). Real
GDP is taken from Eurostat and backcasted with the AWM database before 1995Q1. The
auxiliary indicator is the rate of capacity utilisation published by the European Commis-
sion. It is available for the euro area since 1985Q1 and backcasted with country data before.
It is demeaned prior to the estimation. Regarding the variables entering the Phillips curve,
the harmonised index of consumer prices (HICP) is taken from Eurostat, the oil price in US
dollars from TWI, while the euro US dollar exchange rate and the euro nominal effective
exchange rate against its 16 main competitors are taken from BIS data.

All the models are estimated with maximum likelihood. The computations are carried
out with the optimization library OPTMUM of GAUSS 9.0.0. selecting the BFGS algo-
rithm. Denoting ω the parameters of the model to be estimated, the algorithm we use is
described by the following steps:

• STEP 1: Give initial values to all parameters of the model ω0 and to the expectation
of the state vector and its variance.

• STEP 2: If there is regime switching in at least one parameter of the model, imple-
ment the filtering procedure of Kim and Nelson (1999b) for state-space models with
regime switching using in the first iteration ω0 and in the following iterations ωj.
If there is no regime switching, one needs to implement the standard Kalman filter
using in the first iteration the initial values for the state vector and its variance, and
in the next iterations their updated versions. At the end of Step 2, we thus obtain
estimates of the filtered probabilities (if there is regime switching), the state vector
and the log-likelihood function.
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• STEP 3: Maximize the log-likelihood function to obtain an updated version of the
parameters ωj.

• STEP 4: Iterate over STEPS 2 to 3 until the algorithm has converged.

Hamilton (1994) pointed out that this algorithm is a special case of the EM algorithm:
the expectation (E) step is step 2 and the maximization (M) step is step 3. Note that the
expectation step aims at formulating guesses about the latent variables (i.e. the unobserved
components and the regime probabilities) given the data and the initial or updated values
of the parameters, while the maximization step yields the values of the parameters that
maximize the log-likelihood over the iterations.

3.1 Time-varying Phillips curve

We first estimate a univariate time-varying Phillips curve without a trend-cycle decom-
position model of GDP since model selection would raise difficulties in the multivariate
framework.4 The specification of the Phillips curve that best fits the data is chosen in a
univariate context, using a basic HP filter as a measure of the output gap, before being
included and re-estimated jointly with the output gap in the multivariate framework.

We estimate equations (11)-(12) by maximizing the log-likelihood function via the EM
algorithm as described in the previous subsection. Inflation is 100 times the quarterly
change in consumer prices (HICP) and the output gap is the cycle extracted from the
Hodrick-Prescott filter. The exchange rate and oil prices in euro terms are 100 times the
quarterly change of their logarithm. For selecting the right number of lags in equation (11),
we proceed sequentially: we first estimate a model with four lags for each of the explanatory
variables and delete the least significant variables until all coefficients are significant at least
at the 10% level.

Table 1 in Appendix D reports the maximum likelihood parameter estimates and their
standard errors. First, applying the above criterion to determine the number of lags on each
explanatory variable, we select a model with no lagged inflation. We see two explanations
for this result: (i) the time-varying parameter can capture part of the significance of lagged
inflation (ii) confirmation of the purely forward looking New Keynesian Phillips Curve,
which states that current inflation only depends on expected inflation and current marginal
cost.5 Besides, this result is in line with Hondroyiannis et al. (2009), who use time-varying
parameter models on data for Germany, France, Italy and the United Kingdom and also
favor specifications that exclude lagged inflation. Second, the coefficient entering before
the output gap is highly significant and positive: a one percentage point increase in the

4We experimented problems of convergence of our algorithm when we carried out model selection within
the bivariate framework with regime switching.

5In the estimation of the New Keynesian Phillips curve, current marginal costs are often approximated
by the output gap (see e.g. Rudd and Whelan (2007)). However, some argue that unit labor costs should
be used as the driving variable in the Phillips curve (see e.g. Gali and Gertler (1999)). This debate is
beyond the scope of this paper.
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output gap pushes up inflation by 0.15%. This is the lower bound of the estimates reported
in the literature. Third, the coefficients on lagged exchange rate and oil price, taken in
euros, are both significant and have the expected signs. An appreciation of the euro has a
negative impact on inflation, with a 10% appreciation diminishing inflation by about 0.2%.
Finally, an increase in oil price has a positive impact on inflation.

Figure 1 shows the time-varying parameter of the Phillips curve, which is interpreted as
the level of medium term inflation with actual inflation and the difference between actual
and expected inflation. For example, over the most recent period, oil price, the exchange
rate and the output gap are estimated to have contributed to annual inflation by almost 2
p.p. at the end of 2008 and around -1 p.p. at the end of 2009.

Figure 1: Model Decomposition of euro area inflation (annual growth, %)
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Figure 2: Smoothed probabilities of being in the first regime
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3.2 Univariate and bivariate trend-cycle decomposition of euro
area real GDP

We estimate the univariate and bivariate trend-cycle decomposition models of the euro
area GDP described in Section 2: the three univariate models and the six bivariate models.6

Tables 2, 3 and 4 in Appendix D report the maximum likelihood estimates.

Table 2 in Appendix D shows the results for the univariate models of the trend-cycle
decomposition of GDP. First, the regime switching intercepts are highly significant in the
two regimes. In addition, both regime switching models increase the log likelihood by
about 15 with respect to the linear model.7 This points out the relevance of parameter
switching in the trend equation of GDP and provides evidence for possible decreases in
trend output growth during recessions. Indeed, Figure 2 shows that the probability for a
negative intercept for potential output peaks for few periods around 1974 and 2009.

Note: MODEL UC-2 is the model with a switch in the slope of the trend only. MODEL UC-3 is the

model with in the slope of the trend and its error variance. MODEL MUC-2 (inflation) is a bivariate model

with an equation for inflation and a switch in the slope of the trend of GDP only.

Table 3 in Appendix D reports the results for the models using the demeaned rate
of capacity utilisation as an auxiliary indicator to better estimate the output gap. The

6In all the models, stationarity constraints on the parameters φ1 and φ2 and positive definiteness con-
straints on the variance parameters of the innovations were imposed. Standard deviations were computed
from the inverse of the outer product estimate of the Hessian.

7However, the improvement in the log-likelihood cannot be tested. A standard likelihood ratio test
cannot be implemented since (i) the transition probabilities are not identified and (ii) the scores of the log
likelihood are identically equal to zero under the null hypothesis of no regime switching.
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coefficients for the auxiliary indicator are highly significant, which shows its relevance to
estimate the output gap.

The results for the bivariate models using inflation as an extra variable in the system are
reported in Table 4 of Appendix D, while the resulting medium-term inflation is represented
in Figure D. In the equation for inflation, we include one lag for the output gap, the
exchange rate and the oil price following the results obtained in the previous subsection.
As a robustness check, we also include one lag for inflation even if it is not significant in the
univariate analysis (the state-space representation of the model is given by equations (15)
and (16)). The parameter estimates for the coefficients of the exchange rate, oil price and
output gap are similar across all specifications and consistent with the results obtained in
the univariate analysis (see Table 1 in Appendix D). The coefficient for lagged inflation is
not significant at the 5% level, in line with the results obtained in the univariate analysis
(except for the model MUC-3 (inflation)).

Figure 2 shows the probability of a low trend for GDP growth. A high probability of
this regime is associated with all the recession episodes recorded in the euro area over the
estimation period: 1982-1984, 1992-1993 and 2008-2009.8 However, there is less evidence
for regime switching for the models using inflation since the increase in the log-likelihood
for the regime switching models is modest with respect to the linear model (see the last
row of Table 4).

3.3 Comparison of estimated output gaps and model-averaged
measures

Figure 3 shows the output gaps estimated for the nine models under scrutiny. There
are important differences between the estimates of the output gap, with a range max-min
between the estimates of the output gap reaching high levels during the two important
recessions identified in the sample: 4% in the beginning of 1992 and 5% in the beginning
of 2010.

The output gaps estimated from the univariate models differ depending on whether
there is regime switching or not. In particular, the output gap estimated from a linear
univariate model captures well the expansions and recessions experienced by the euro area.
However, the univariate regime switching models estimate a smaller negative output gap for
the last recession, which suggests that the last recession also affected the level of potential
output. The models with inflation tend to yield smoother estimates of the output gap and
therefore allocate more variation to the trend of output. Conversely, the models with the
rate of capacity utilisation as an auxiliary indicator are very close to each other. They
closely match the evolution of the euro area economic activity, and therefore allocate little
variation to the level of potential output.

In the forecasting literature, it is often found that combining forecasts from different
models allows to improve the forecasts from individual models (see e.g. Drechsel and

8See Figure A in Annex D for a plot of the nine estimates of euro area potential output over the entire
estimation period.
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Figure 3: Estimates of euro area output gap derived from the unobserved
components models estimated
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Note: MODEL UC-1 is the linear univariate trend-cycle decomposition of GDP, MODEL UC-2 is the

univariate trend-cycle decomposition of GDP with a switch in the slope of the trend only and MODEL

UC-3 is the univariate trend-cycle decomposition of GDP with a switch in both the slope of the trend

of GDP and its error variance. MODEL MUC-1 (auxiliary) is the linear bivariate model with the trend-

cycle decomposition of GDP and an equation for capacity utilisation, MODEL MUC-2 (auxiliary) is the

bivariate model with capacity utilisation and a switch in the slope of the trend of GDP and MODEL

MUC-3 (auxiliary) is the bivariate model with capacity utilisation and a switch in the slope of the trend of

GDP and its error variance. MODEL MUC-1 (inflation) is the linear bivariate model with the trend-cycle

decomposition of GDP and an equation for inflation, MODEL MUC-2 (inflation) is the bivariate model

with inflation and a switch in the slope of the trend of GDP and MODEL MUC-3 (inflation) is the bivariate

model with inflation and a switch in the slope of the trend of GDP and its error variance.

Maurin (2011)). This is particularly relevant for estimating the output gap since the
model estimates are characterized by both model uncertainty and parameter instability.
Therefore, we compute three different model-averaged measures of the output gap: (i) one
measure obtained as the simple arithmetic average over each of the nine models, labeled
EST. 1, (ii) one measure obtained as the median estimate over each of the nine models,
labeled EST. 2, (iii) the last measure takes into account the uncertainty in the estimation
of the output gap and is labeled EST. 3. In particular, the latter measure gives higher
weights wt(l) to the models with smaller variances attached to the estimated output gaps:
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wt(l) =
[Vt(z

(l)
t )]−1∑L

l=1[Vt(z
(l)
t )]−1

(17)

where wt(l) are the weights given to model l at time t, z
(l)
t is the output gap from model

l at time t and Vt(z
(l)
t ) its corresponding variance estimated from the Kalman filter. In this

way, the weights are time-varying, positive and sum to one.

Figure 4 plots the three model-averaged measures. The model-averaged measure with
time-varying weights (labelled as ”EST. 3”) is more cyclical since it gives more weights
to the models using the demeaned rate of capacity utilisation, which yield more precise
estimates of the output gap (i.e. with a smaller variance). In particular, focussing on the
most recent period, the amplitude of the model-averaged output gap estimates is largely
reduced compared to the one of the initial nine estimates (from between -0.5 and -4.8 p.p.
to between -1.2 p.p. and -1.8 p.p. at the end of 2010). The three model-averaged measures
are overall fairly close unlike the estimates from the individual models, which shows the
relevance of combining individual model estimates to obtain more reliable estimates of the
output gap.

Figure 4: Model averaged measures of the nine estimates
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4 Do real-time estimates of the output gap improve

inflation forecasts?

In this section, we assess the usefulness of our different output gap measures to predict
inflation and also investigate the importance of data revisions for the predictive power of
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the output gap. We first compute the real-time estimates of the estimated output gap
measures. We then evaluate the usefulness of our different output gap measures to predict
inflation and also investigate the importance of data revisions for the predictive power of
the output gap for inflation. The Clark and McCracken (2009a) test of equal forecast
accuracy is then implemented to compare the forecasting performances.

4.1 Real-time estimates of the output gap

It has long been advocated that there are severe differences between the real-time es-
timates of the output gap and their final vintages counterparts (see e.g. Orphanides and
Van Norden (2002)). We use the first releases of GDP to construct the real-time measures
of the euro area output gap. This estimate is published around 60 days after the end
of the reference quarter. The first estimation sample goes from t=1970Q1 to t=2001Q1.
The sample is then recursively expanded until we reach the end of the estimation sam-
ple T=2010Q4. We therefore obtain 40 different vintage series for the output gap, each of
them being associated with a different date for its final observation (i.e. from T=2001Q1 to
T=2010Q4). We run the pseudo real-time estimation exercise for the univariate trend-cycle
decomposition models of GDP (i.e. MODEL UC-1, MODEL UC-2, MODEL UC-3) and
for the bivariate model with capacity utilisation9 as an auxiliary indicator (i.e. MODEL
MUC-1 (auxiliary), MODEL MUC-2 (auxiliary), MODEL MUC-3 (auxiliary)).10 We also
combine the individual estimates of the output gap in the three model-averaged measures
detailed above.

Figure 5 plots the range of revisions for each of the three different model-averaged
measures, while Figures A, B and C in Appendix D plot all the individual measures. In
line with Orphanides and Van Norden (2002), we indeed find that the estimation of the
output gap in real-time is associated with a large uncertainty. Figure 5 also shows that the
equal weights and the median measures are associated with large revisions as the path of
the output gap is changing significantly across the different vintages used (see also Figures
A and B in the appendix), this is particularly acute prior to important economic downturns.
Focussing on the measure based on equal weights, the maximum revision change amounts
to more than 1 p.p. around 1990-1992, around 1.5 p.p. around 2001-2002. At the end of
2010, 1 year after the first estimate, the estimates of the output gap for the end of 2009
has already change by more than 1 p.p. Conversely, the measure that gives time-varying
weights depending on the uncertainty associated with the output gap is considerably less
affected by GDP data revisions. This comes from the fact that this measure gives heavy
weights to the output gaps estimated with the demeaned rate of capacity utilisation, which
have a smaller variance than the output gaps estimated from univariate models.

9The rate of capacity utilisation is not revised over time.
10The bivariate models with an equation for inflation are not included since we encountered problems of

convergence of the algorithm in the real-time exercise.
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Figure 5: Estimates of output gap in real time: range of revisions, (Max-
Min)
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4.2 Inflation forecasts

The predictive ability of the output gap for forecasting inflation is contrasted as it
seems that the relation between inflation and output gap has weakened since the mid-
1980s. Atkeson and Ohanian (2001) find that Phillips curve forecasts do not outperform
simple univariate benchmarks. Stock and Watson (2008) extensively study Phillips curve
forecasts using different sample periods, inflation series and benchmarks. They find that the
Phillips curve predictive abilities are rather episodic and depend upon the evaluation sample
chosen. Orphanides and van Norden (2005) also find that the forecasting performance of
the output gap is unstable over time and point out the discrepancies between inflation
forecasts based on real-time estimates of the output gap and their ex-post counterparts.
However, the output gap - as a measure of economic slackness - is conceptually an intuitive
predictive variable for inflation. Indeed, the triangle model of Gordon (1997) states that
inflation depends on lagged inflation, the unemployment rate and supply shock variables.

The present forecasting exercise aims at assessing the predictive power of the output
gap for forecasting inflation using the real-time estimates of the output gap as well as
the ex-post estimates obtained from the last vintage of data available to us (T=2010Q4).
The inflation forecasts are computed for horizon varying from 1 quarter ahead to 2 years
ahead. For each horizon, the Clark and McCracken (2009a) test of equal forecast accuracy
is implemented to compare the forecasting performances.11

11The test of equal forecast accuracy with real-time and revised data is described in detail in Appendix
C.
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We first consider the specification described in Orphanides and van Norden (2005) and
forecast the level of inflation:

π
(h)
t+h = α +

P∑
k=1

βkπt−k +
J∑

j=1

γjx
(l)
t−j,τ + εPC,t+h (18)

The benchmark model is an AR(p) model for the level of inflation:

π
(h)
t+h = α +

P∑
k=1

βkπ
(1)
t−k + εAR,t+h (19)

We also follow Stock and Watson (1999), Clark and McCracken (2009a) and use a
Phillips curve for forecasting the change in inflation:

π
(h)
t+h − πt = α +

P∑
k=1

βkΔπt−k +
J∑

j=1

γjΔx
(l)
t−j,τ + εPC,t+h (20)

The benchmark model is instead defined as:

π
(h)
t+h − πt = α +

P∑
k=1

βkΔπt−k + εAR,t+h (21)

where: π
(h)
t+h = (400

h
)ln(pt+h

pt
), πt = 400ln( pt

pt−1
), and x

(l)
t,τ is a real-time measure of the

output gap from model l at time t using data for GDP from the data vintage τ and Δx
(l)
t,τ

is its quarterly difference.

The design of the pseudo-out-of-sample forecasting exercise is the following. The fore-
casts are computed with the direct method and the maximum lag lengths P and J are
chosen with the SIC (maximum lag of 8) using the first estimation sample of the recursive
forecasting exercise.12 We do not select recursively the number of lags since the Clark
and McCracken (2009a) test of equal predictive accuracy with real-time data requires the
number of parameters to be constant within each forecasting experiment. The real-time
measures of the output gap are obtained from the previous subsection. We estimate equa-
tions (18)-(21) with OLS and compute for a given model i with forecast error ûi,t+τ the
mean squared forecast error (MSEi):

MSEi = (P − τ + 1)−1
T∑

t=R

û2
i,t+τ

where R is the initial forecast origin and (P − τ + 1) is the number of forecast errors.
The actual value for inflation is taken from the last vintage of data available to us (i.e.

12Selecting the lag length recursively or using the AIC rather than the SIC does not change qualitatively
the results.
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T=2011Q1). We compute forecasts one-quarter-ahead (h = 1), two-quarter-ahead (h = 2),
one-year-ahead (h = 4) and two-year-ahead (h = 8).

A few additional comments are required. Note first that we do not consider additional
explanatory variables in the Phillips curve equations (19) and (21) since we explicitly focus
our analysis on the predictive power of the output gap for inflation and consider inflation
excluding energy. Second, we only use real-time data for our output gap measures since
we want to concentrate our analysis on the importance of data revisions to GDP for the
predictive power of the output gap for inflation. Data revisions to HICP excluding energy -
our measure of inflation here - are usually very small and are unlikely to affect our results.
In this respect, we follow Orphanides and Van Norden (2005). Third, we consider two
evaluation samples for our forecasting exercise 2001-2007:Q4 and 2001-2010:Q4 in order to
assess the impact of the last recession on our results. Finally, we do not use the model with
a time-varying constant in the forecasting exercise since it brings an additional source of
uncertainty in the model that could cloud the interpretation of the results on the forecasting
performance of the output gap.

Table A reports the forecasting results for the forecasts of the level of inflation. The
benchmark model yields better forecasts than the Phillips curve specifications based on
the real-time estimates of the output gap for forecasting the level of inflation for one-
quarter-ahead forecasts (see Panel A of Table A). Conversely, the models with the real-
time estimates of the output gap improve the forecasting performance of the benchmark
model for forecasting horizons h = {2, 4, 8} (except for the UC-3, MUC-1, MUC-2, MUC-
3 and Est.3 models with h = 2). However, the improvement in forecasting performance
seems to be only of marginal importance since the increase in MSE is always lower than
20% and often inferior to 10%. Besides, the Clark and McCracken (2009a) test of equal
predictive ability with real-time data cannot reject the null hypothesis of equal forecast
accuracy except for the UC-1 and UC-2 models at the forecasting horizon h = 4 and h = 2
respectively. Interestingly, excluding the 2008-2010 period from the evaluation sample
improves the forecasting performance for all models for one-quarter-ahead forecasts. In
addition, nearly all models with forecast horizons h = 8 statistically improve the forecasts
with respect to the benchmark model (except for the Est. 3 model) (see Panel C of Table
A).

Besides, using the ex-post estimates worsens the one-quarter-ahead forecasts and do
not clearly improve forecasts for forecast horizon h > 1 with respect to the forecasts that
use the real-time estimates of the output gap (see Panel B and D of Table A). However,
the improvement in forecasting performance is often significant when using the ex-post
estimates of the output gap for forecast horizons h = 2 and h = 8. The p-values are
computed from the Clark and McCracken (2005) test of equal forecast accuracy, which is
described in Appendix C.

Table 5 in the appendix reports the forecasting results for the change in inflation. First,
none of the models with the real-time estimates of the output gap as a predictor can
outperform the benchmark model for forecasting the change in inflation (see Panel A of
Table 5). This is particularly acute for one-quarter-ahead predictions for the output gap
models using capacity utilisation as an extra indicator. The reason for this poor forecasting
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Table A: Forecast comparison exercise: results for inflation (HICP excluding energy)

Model UC-1 UC-2 UC-3 MUC-1 MUC-2 MUC-3 Est. 1 Est. 2 Est. 3
(auxiliary) (auxiliary) (auxiliary)

Panel A. Real-time output gap series, 2001-2010

h=1 1.777 1.292 1.088 2.662 2.520 2.350 2.234 1.559 2.551

h=2 0.844 0.864(b) 1.035 1.227 1.185 1.145 1.170 0.833 0.933

h=4 0.814(a) 0.862 0.993 0.978 0.969 0.975 0.970 0.906 0.955
h=8 0.947 0.928 0.959 0.983 0.983 0.984 0.984 0.966 1.000

Panel B. Ex-post output gap series, 2001-2010

h=1 1.781 1.420 1.427 2.953 2.881 2.725 2.638 1.909 2.660

h=2 0.804(c) 0.923(b) 0.925(b) 1.104 1.065 1.065 1.078 0.820(c) 0.891(b)

h=4 0.797(b) 0.936 0.939 0.970 0.962 0.968 0.959 0.884(b) 0.900(b)

h=8 0.932(a) 0.936(a) 0.936 0.979 0.977 0.980 0.978 0.953 0.967

Panel C. Real-time output gap series, 2001-2007

h=1 1.247 1.551 1.081 1.199 1.202 1.234 1.237 1.206 1.478
h=2 0.829 1.018 1.017 0.738 0.727 0.717 0.721 0.817 0.774
h=4 0.903 1.001 0.998 0.923 0.919 0.923 0.928 0.957 0.967

h=8 0.850(c) 0.804(c) 0.823(c) 0.829(c) 0.829(c) 0.829(c) 0.831(c) 0.861(c) 0.905

Panel D. Ex-post output gap series, 2001-2007

h=1 1.474 1.472 1.477 1.688 1.765 1.602 1.693 1.692 1.609

h=2 0.829(c) 0.828(c) 0.826(c) 0.556(c) 0.532(c) 0.564(c) 0.549(c) 0.770(c) 0.771(c)

h=4 0.925(a) 0.904(a) 0.903(a) 0.918 0.917 0.921 0.916 0.939(a) 0.935(a)

h=8 0.801(a) 0.789(b) 0.788(b) 0.830(a) 0.831(a) 0.830(a) 0.832(a) 0.830(a) 0.842(a)

Note: Ratio of the mean squared forecast error between the forecasts obtained from a Phillips curve

equation with a real-time measure of the output gap as a proxy for the activity-based measure and a

benchmark model given by an AR(p). Est. 1, Est. 2 and Est. 3 are the model averaged measures detailed

in the text. The superscripts a, b and c indicate that the test of equal forecast accuracy rejects respectively

the null hypothesis of equal forecast accuracy at significance levels of 10%, 5% and 1% level. Appendix C

details the Clark and McCracken (2009a) test for real-time data and the Clark and McCracken (2005) test

for equal forecast accuracy with revised data.

performance is that these models estimate a very negative output gap for the 2008-2010
period, which translates into very low or negative forecasts for the change in inflation.
Indeed, if we exclude the 2008-2010 period from the evaluation sample, the one- and two-
quarter-ahead forecasts do improve with respect to the full evaluation sample 2001-2010,
although they do not beat the autoregressive benchmark or not significantly (see Panel C



23
ECB

Working Paper Series No 1384
October 2011

of Table 5) 13. Second, using the ex-post rather than the real-time estimates of the output
gap does not clearly improve the forecasts for the change in inflation (see Panel B and
Panel D of Table 5).

The evidence on the importance of the output gap for predicting inflation is therefore
contrasted. Indeed, the real-time measures of the output gap do improve the forecasts for
the level of inflation for forecasting horizons h = {2, 4, 8} but this improvement is mostly
statistically insignificant. Besides, the forecasts for the change in inflation based on the
real-time estimates of the output gap are always outperformed by a standard autoregressive
benchmark for the change in inflation when using the full evaluation sample. The use of the
ex-post estimates of the output gap does not clearly improve forecasts for forecasting both
the change and the level of inflation with respect to the forecasts based on the real-time
output gap estimates.

5 Concluding remarks

This paper estimates various trend-cycle decomposition models of the euro area GDP
using state-space models. We consider univariate and multivariate models as well as linear
and non linear models. Non linearities are modelled with regime changes in the intercept of
the trend equation and/or in the variance of its innovation. Multivariate models consider
alternatively inflation and the demeaned rate of capacity utilisation as additional variables
in the system to better estimate the output gap. The univariate non linear specifications
point out evidence for regime changes in the slope of the trend equation for GDP for
few periods around 1974 and 2009. Besides, the demeaned rate of capacity utilisation
proves to be useful for obtaining more reliable estimates of the output gap by reducing the
uncertainty. With this model, we also find some evidence of regime changes in the slope
of the trend of the euro area GDP for few periods, around 1974 and since 2008. We also
conduct a real-time analysis for computing real-time estimates of the output gap an found
that model averaging techniques improve the reliability of the potential output estimates in
real time. Indeed, our model-averaged estimates of the output gap decrease the uncertainty
surrounding the output gap estimates and soften the impact of data revisions.

We then run a pseudo out-of-sample forecasting experiment to forecast the level and
the change in inflation using both ex-post and real-time estimates of the output gap. We
find that our output gap measures help forecasting inflation over most of the sample but
fail dramatically since the last recession.

One possible avenue for further research on this topic would be to exploit the regime
changes in the variance-covariance matrix of the innovations of the measurement and tran-
sition equations in order to obtain identification of more complicated trend-cycle decom-
position models of the output gap. This could be done along the lines of Rigobon (2003)
and Lanne et al. (2010). Alternatively, it would also be interesting to estimate models
with mixed-frequency data to provide monthly estimates of the output gap and evaluate
whether this provides more relevant information, in terms of accuracy and/or timeliness.

13Using the level of the output gap rather than the change in the output gap in equation (20) worsens
the forecasting results.
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Appendix A: State-space representation of the original model of trend-cycle
decomposition of output
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Appendix B: Kalman filter, Hamilton filter and Kim and Nelson filtering
procedure

The equations of the basic Kalman filter can be found in a standard time series textbook
such as Luetkepohl (2005). The general representation for a state-space model with regime
switching in both measurement and transition equations is given by:

yt = H(St)βt + A(St)zt + et

βt = µ̃(St) + F (St)βt−1 +G(St)vt

where: et ∼ N(0, R(St)), vt ∼ N(0, Q(St)), and et and vt are not correlated.

Kim and Nelson (1999b) show how to combine the Kalman and Hamilton filters in a
tractable way, the equations of the Kim and Nelson (1999b) filtering procedure for state-
space models with regime switching are:

β
(i,j)
t|t−1 = µ̃j + Fjβ

i
t−1|t−1

P i,j
t|t−1 = FjP

i
t−1|t−1F

′
j +GQjG

′
j

η
(i,j)
t|t−1 = yt −Hjβ

(i,j)
t|t−1 − Ajzt

f
(i,j)
t|t−1 = HjP

(i,j)
t|t−1H

′
j +Rj

β
(i,j)
t|t = β

(i,j)
t|t−1 + P

(i,j)
t|t−1H

′
j[f

(i,j)
t|t−1]

−1η
(i,j)
t|t−1
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P
(i,j)
t|t = (I − P

(i,j)
t|t−1H

′
j[f

(i,j)
t|t−1]

−1Hj)P
(i,j)
t|t−1

When there is regime switching, it is also necessary to introduce approximations at the end
of the Kalman and Hamilton filters to avoid the proliferation of cases to be considered:

βj
t|t =

∑M
i=1 Pr[St−1 = i, St = j|Ψt]β

(i,j)
t|t

Pr[St = j|Ψt]

P j
t|t =

∑M
i=1 Pr[St−1 = i, St = j|Ψt]{P (i,j)

t|t + (βj
t|t − β

(i,j)
t|t )(βj

t|t − β
(i,j)
t|t )′}

Pr[St = j|Ψt]

Appendix C: Clark and Mc Craken tests for comparing forecasting perfor-
mance

We first detail the test of equal forecast accuracy with real-time data.

Denote P the number of forecasts, R the sample size at the initial forecast origin, T the
full sample size, τ the forecast horizon, û2,t+τ the forecast error in model 2, d the squared
forecast loss differential between model 1 and model 2, k1 the number of parameters in the
benchmark model (i.e. model 1), k22 the number of excess parameters in model 2.

The Clark and McCracken (2009a) test statistic S for comparing predictive accuracy
for nested models with real-time data is given by:

S =
P

1
2d√
Ω

Under the null hypothesis of equal predictive accuracy:

S −→
A

N(0, 1)

This differs from Clark and McCracken (2005), where simulated critical values are re-
quired in the tests of equal predictive accuracy for nested models. The use of real-time data
instead strongly changes the asymptotic for these tests and allows to use standard normal
tables for inference as long as we can obtain an asymptotically valid long run variance for
Ω. A consistent asymptotic long run variance of the scaled forecasting loss differential Ω
is:

Ω = 2(1− π−1ln(1 + π))F(−JB1J
′ +B2)Shh(−JB1J

′ +B2)F
′

where:

π =
P

R

J′ = (Ik1xk1 ,0k1xk22)
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B̂i = (T−1
T−τ∑
s=1

xi,sx
′
i,s)

−1

F̂ = 2[P−1
T∑

t=R

û2,t+τx
′
2,t]

The long run variance Ŝhh is obtained by weighting the relevant leads and lags of Γhh

following Newey and West’s (1987) HAC estimator with a bandwidth of 2τ , where

Γ̂hh(j) = Eht+τh
′
t+τ−j

and
ht+τ = (ys+τ − x2,sβ2,T )x2,s

We also compute the Clark and McCracken (2009a) MSE-F test statistic for equal
predictive ability of two nested models with revised data as follows:

MSE − F =

∑T−τ
t=R d̂t+τ

MSE2

where d̂t+τ is the difference between the squared forecast errors d̂t+τ = û2
1,t+τ − û2

2,t+τ , and
MSE2 is the mean squared forecast error of model 2. We implement the novel bootstrap-
ping procedure described in Clark and McCracken (2009b) and compute the p-values from
1000 replications.
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Appendix D: Estimation results

Figure A: Euro area potential output from the nine estimates, 1974Q1-
2010Q4
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Note: Logarithm - MODEL MUC-1 (inflation) is the linear bivariate model with the trend-cycle decom-

position of GDP and an equation for inflation, MODEL MUC-2 (inflation) is the bivariate model with

inflation and a switch in the slope of the trend of GDP and MODEL MUC-3 (inflation) is the bivariate

model with inflation and a switch in the slope of the trend of GDP and its error variance.

Figure B: Euro area output gap, real-time data, model-averaged measures
with equal weights, 1974Q1-2010Q4
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Figure C: Euro area output gap, real-time data, model-averaged measures
computed as the median of the individual output gaps, 1974Q1-2010Q4

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

3%

1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010

Figure D: Euro area output gap, real-time data, model-averaged measures
with time-varying weights, 1974Q1-2010Q4
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Figure E: Actual inflation and medium-term inflation from UC and MUC
models
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Note: See footnote Chart A in the same appendix.

Table 1: Time-varying Phillips curve

zt 0.149***
[0.033]

EXRt−1 -0.017*
[0.009]

OILt−1 2.838 ∗ 10−3*
[1.500 ∗ 10−3]

σ2
π 0.227***

[0.019]

σ2
μ 0.146***

[0.022]

Note: Maximum likelihood estimates of the time-varying Phillips curve (see Equations 11 and 12). We

imposed positive definiteness constraints on the variance parameters of the innovations. The measure for

the output gap zt is the cycle computed by the HP filter. ***, ** and * indicate significance at 1%, 5%

and 10%. Standard deviations are reported in brackets and are computed from the inverse of the outer

product estimate of the Hessian. Log(L), the value of the log likelihood function is -40.1.
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Table 2: Univariate model

Model UC-1 Model UC-2 Model UC-3

p11 - 0.491*** 0.568**
[0.038] [0.098]

p22 - 0.986*** 0.982***
[0.010] [0.014]

φ1 1.236*** 1.194*** 1.205***
[0.032] [0.116] [0.026]

φ2 -0.292*** -0.237*** -0.251***
[0.046] [0.114] [0.037]

μ1 5.147 ∗ 10−3*** −17.0 ∗ 10−3*** −12.2 ∗ 10−3**
[0.227 ∗ 10−3] [3.977 ∗ 10−3] [5.219 ∗ 10−3]

μ2 - 5.301 ∗ 10−3*** 5.495 ∗ 10−3***
[0.261 ∗ 10−3] [0.287 ∗ 10−3]

σn,1 1.5 ∗ 10−3 1.5 ∗ 10−3 6.749 ∗ 10−3*
[1.964 ∗ 10−3] [3.021 ∗ 10−3] [3.630 ∗ 10−3]

σn,2 - - 1.5 ∗ 10−3
[2.221 ∗ 10−3]

σz 5.502 ∗ 10−3*** 4.490 ∗ 10−3*** 4.345 ∗ 10−3***
[0.615 ∗ 10−3] [0.107 ∗ 10−3] [0.848 ∗ 10−3]

P (St = 1) - 0.026 0.041

Log(L) 608.041 624.010 624.732

Note: Maximum likelihood estimates for the three univariate unobserved components models of trend-

cycle decomposition of log GDP (see Equation 22 and 23 in Appendix A). Model UC-1 is the linear model

described by equations (1) to (3). Model UC-2 is a model with a switch in the drift of the trend equation

for the level of GDP. Model UC-3 is a model with switches in the drift of the trend equation and in the

variance of the innovation for the trend component of GDP. P (St = 1) is the unconditional probability

of being in the first regime. Log(L) is the value of the log likelihood function. Standard deviations are

reported in brackets. ***, ** and * indicate significance at 1%, 5% and 10%.
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Table 3: Bivariate model (GDP and rate of capacity utilisation)

Model MUC-1(auxiliary) Model MUC-2(auxiliary) Model MUC-3(auxiliary)

p11 - 0.981*** 0.823***
[0.038] [0.151]

p22 - 0.994*** 0.958***
[0.007] [0.022]

φ1 1.371*** 1.372*** 1.349***
[0.028] [0.028] [0.023]

φ2 -0.509*** -0.527*** -0.472***
[0.048] [0.048] [0.040]

μ1 5.698 ∗ 10−3*** 11.9 ∗ 10−3*** 0.693 ∗ 10−3
[0.374 ∗ 10−3] [1.101 ∗ 10−3] [1.539 ∗ 10−3]

μ2 - 5.010 ∗ 10−3*** 6.764 ∗ 10−3***
[0.351 ∗ 10−3] [0.482 ∗ 10−3]

α1 0.962*** 0.913*** 0.842**
[0.269] [0.238] [0.364]

α2 1.840*** 1.737*** 2.753***
[0.305] [0.254] [0.574]

σaux 2.856 ∗ 10−3*** 2.936 ∗ 10−3*** 2.504 ∗ 10−3***
[0.356 ∗ 10−3] [0.337 ∗ 10−3] [0.444 ∗ 10−3]

σn,1 4.753 ∗ 10−3*** 4.143 ∗ 10−3*** 1.562 ∗ 10−3***
[0.287 ∗ 10−3] [0.269 ∗ 10−3] [0.256 ∗ 10−3]

σn,2 - - 4.469 ∗ 10−3***
[0.290 ∗ 10−3]

σz 3.444 ∗ 10−3*** 3.610 ∗ 10−3*** 4.347 ∗ 10−3***
[0.381 ∗ 10−3] [0.364 ∗ 10−3] [0.910 ∗ 10−3]

P (St = 1) - 0.229 0.192

Log(L) 1315.089 1327.591 1344.208

Note: Maximum likelihood estimates for the three bivariate unobserved components models of trend-cycle

decomposition of log GDP (see Equations 9 and 10). Model MUC-1 (auxiliary) is a model without regime

switching. Model MUC-2 (auxiliary) is a model with a switch in the slope of the trend. Model MUC-3

(auxiliary) is a model with switches in the slope of the trend equation and in the variance of its error.

P (St = 1) is the unconditional probability of being in the first regime. Log(L) is the value of the log

likelihood function. Standard deviations are reported in brackets. ***, ** and * indicate significance at

1%, 5% and 10%.
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Table 4: Bivariate model (GDP and inflation)

Model MUC-1(inflation) Model MUC-2(inflation) Model MUC-3(inflation)

p11 - 0.885*** 0.974***
[0.074] [0.022]

p22 - 0.948*** 0.989***
[0.032] [0.012]

φ1 1.285*** 1.406*** 1.351***
[0.044] [0.063] [0.052]

φ2 -0.367*** -0.571*** -0.475***
[0.069] [0.114] [0.089]

μ1 5.085 ∗ 10−3*** 0.91610∗−3 5.265 ∗ 10−3***
[0.277 ∗ 10−3] [1.542 ∗ 10−3] [0.275 ∗ 10−3]

μ2 - 7.332 ∗ 10−3*** 5.567 ∗ 10−3***
[0.661 ∗ 10−3] [0.648 ∗ 10−3]

λπ -0.044 -0.086 -0.069**
[0.388] [0.001] [0.034]

λz 0.157* 0.259*** 0.289***
[0.081] [0.071] [0.074]

λEXR -0.017* -0.017* -0.015*
[0.010] [0.007] [0.009]

λOIL 3.018 ∗ 10−3* 2.751 ∗ 10−3* 2.928 ∗ 10−3*
[1.706 ∗ 10−3] [1.470 ∗ 10−3] [1.509 ∗ 10−3]

σπ 2.181 ∗ 10−3*** 2.088 ∗ 10−3*** 2.094 ∗ 10−3***
[0.621 ∗ 10−3] [0.180 ∗ 10−3] [0.209 ∗ 10−3]

σn,1 2.961 ∗ 10−3** 3.792 ∗ 10−3*** 6.324 ∗ 10−3***
[0.126 ∗ 10−3] [0.568 ∗ 10−3] [0.611 ∗ 10−3]

σn,2 - - 1.5 ∗ 10−3*
[0.818 ∗ 10−3]

σz 4.708 ∗ 10−3*** 3.209 ∗ 10−3*** 2.830 ∗ 10−3***
[0.833 ∗ 10−3] [0.772 ∗ 10−3] [0.515 ∗ 10−3]

σμ 1.5 ∗ 10−3* 1.5 ∗ 10−3*** 1.519 ∗ 10−3***
[0.874 ∗ 10−3] [0.270 ∗ 10−3] [0.311 ∗ 10−3]

P (St = 1) - 0.311 0.292

Log(L) 1446.312 1446.861 1451.821

Note: Maximum likelihood estimates for the three univariate unobserved components models of trend-

cycle decomposition of log GDP (see Equations 15 and 16). Model MUC-1 is a model without regime

switching, Model MUC-2 is with a switch in the slope of the trend, and Model MUC-3 incorporates

switches in the slope of the trend and in the variance of its innovation. P (St = 1) is the unconditional

probability of being in the first regime. Log(L) is the value of the log likelihood function. Standard

deviations are reported in brackets. ***, ** and * indicate significance at 1%, 5% and 10%.
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Table 5: Forecast comparison exercise: results for the change in inflation (HICP excluding
energy)

Model UC-1 UC-2 UC-3 MUC-1 MUC-2 MUC-3 Est. 1 Est. 2 Est. 3
(auxiliary) (auxiliary) (auxiliary)

Panel A. Real-time output gap series, 2001-2010

h=1 1.632 1.291 1.046 3.518 3.215 3.036 3.104 1.784 2.983
h=2 1.842 1.420 1.144 2.286 2.173 2.058 2.111 1.533 2.130
h=4 1.523 1.256 1.210 1.447 1.558 1.514 1.544 1.378 1.540
h=8 1.442 1.093 1.115 1.430 1.421 1.438 1.420 1.301 1.339

Panel B. Ex-post output gap series, 2001-2010

h=1 1.757 1.310 1.318 3.785 3.634 3.398 3.545 2.110 2.654
h=2 1.376 1.311 1.316 2.280 2.159 2.159 2.276 1.396 1.807
h=4 1.331 1.141 1.145 1.686 1.717 1.593 1.691 1.442 1.558
h=8 1.268 1.252 1.257 1.421 1.398 1.409 1.404 1.372 1.346

Panel C. Real-time output gap series, 2001-2007

h=1 1.244 1.481 1.061 1.451 1.444 1.494 1.459 1.205 1.578
h=2 1.417 1.587 1.094 0.859 0.875 0.886 0.882 1.107 1.031
h=4 1.122 1.377 1.058 1.219 1.293 1.289 1.283 1.095 1.216
h=8 2.280 1.080 1.043 1.630 1.651 1.632 1.638 1.647 1.503

Panel D. Ex-post output gap series, 2001-2007

h=1 1.537 1.318 1.323 2.103 2.208 2.014 2.147 1.901 1.818
h=2 1.066 1.033 1.034 0.941 0.958 1.047 1.126 0.982 1.031
h=4 0.928 0.958 0.962 1.615 1.657 1.478 1.598 1.262 1.315
h=8 1.673 1.762 1.774 1.659 1.677 1.631 1.675 1.777 1.567

Note: Ratio of the mean squared forecast error between the forecasts obtained from a Phillips curve

equation with a real-time measure of the output gap as a proxy for the activity-based measure and a

benchmark model given by an AR(p). Est. 1, Est. 2 and Est. 3 are the model averaged measures detailed

in the text. The superscripts a, b and c indicate that the test of equal forecast accuracy rejects respectively

the null hypothesis of equal forecast accuracy at significance levels of 10%, 5% and 1% level. Appendix C

details the Clark and McCracken (2009a) test for real-time data and the Clark and McCracken (2005) test

for equal forecast accuracy with revised data.
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