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Abstract

We review the recent literature on rational inattention, identify the main theoretical mecha-
nisms, and explain how it helps us understand a variety of phenomena across fields of economics.
The theory of rational inattention assumes that agents cannot process all available information,
but they can choose which exact pieces of information to attend to. Several important results
in economics have been built around imperfect information. Nowadays, many more forms of
information than ever before are available due to new technologies, and yet we are able to di-
gest little of it. Which form of imperfect information we possess and act upon is thus largely
determined by which information we choose to pay attention to. These choices are driven by
current economic conditions and imply behavior that features numerous empirically supported
departures from standard models. Combining these insights about human limitations with the

optimizing approach of neoclassical economics yields a new, generally applicable model.
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NON-TECHNICAL SUMMARY

This paper surveys the new, rapidly growing literature on rational inattention in economics. Rational
inattention is the idea, proposed by Christopher A. Sims, that economic decision makers cannot absorb

all available information but can choose which pieces of information to process.

Traditionally, economists have assumed that people act based on complete information or based on
incomplete information of some exogenous form. Models of information acquisition exist, but these
models typically place strong restrictions on what kind of information is available. In today’s world,
however, a lot of different kinds of information is available (think of all information on the internet).
In a rational inattention model, an agent can choose in a flexible way what kind and how much
information to absorb. The agent then acts based on the chosen information. This is a model most
readily applicable to situations in which a lot of information is available, the key constraint is an agent’s
limited ability to process information, and the agent has had time to think or experiment to determine

an optimal information acquisition strategy.

The theory of rational inattention yields numerous predictions about economic behaviour. The actions
of a rationally inattentive agent are dampened and delayed relative to the actions of an agent who
acts based on complete information (think of prices responding weakly and slowly to a
macroeconomic disturbance). The extent of dampening and delay changes with the economic
environment, since the environment affects the incentives to process information. The actions under
rational inattention have a random component (think of an economic variable being driven, in part,
by “noise”), and they can be discrete even if disturbances are continuously distributed (think of prices
remaining literally unchanged for some time). The optimal information acquisition strategy typically
involves simplifying the multidimensional state of the economy, so that the agent cannot perfectly
distinguish news about the current state of the economy from news about the future, or news about

one financial market from news about another financial market, which can generate contagion.

The paper explains how the theory of rational inattention helps us understand a variety of phenomena
across fields of economics, reviewing the existing applications of the theory to macroeconomics,
finance, behavioural economics, labour economics, political economy, and other fields. We also survey
the empirical work on rational inattention in economic actions, beliefs and expectations, as well as on
direct measurement of attention choices in the field and in the laboratory. We describe the emerging

lessons for policy.

Let us give here an example of an application of rational inattention. Key questions in macroeconomics

have been how monetary policy affects the economy and why inflation is socially costly. In a rational
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inattention model, tracking the evolving state of the economy requires scarce attention. Most firms
and households typically pay little attention to the aggregate state of the economy including monetary
policy. This informational friction, rather than any physical cost of changing prices, is critical to the
transmission mechanism of monetary policy in a rational inattention model. When inflation is high
and volatile, paying attention to monetary policy becomes more important to agents. As they shift
attention from other productive activities to tracking the aggregate price level, inflation generates

social costs.

Rational inattention is an active area of research, and we emphasise in the paper that many research

questions remain open.
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1 Motivation

In an information-rich world, the wealth of information means a dearth of something
else: a scarcity of whatever it is that information consumes. What information
consumes is rather obvious: it consumes the attention of its recipients. Hence a wealth
of information creates a poverty of attention and a need to allocate that attention

efficiently among the overabundance of information sources that might consume it.

Herbert A. Simon (1971), pp. 40-41

Every decision situation comes with a choice of attention. Agents always face the fundamental
trade-off between processing more information to improve decisions and saving on the mental effort
of doing so. Humans cannot process all available information; yet they can choose how to deal with
this cognitive limitation. The theory of rational inattention is likely to become an important part
of economics because it formalizes this idea. Rational inattention advances the earlier literature
on information acquisition by relaxing assumptions of what information can be acquired. It also
brings classical economics and behavioral economics closer together.

We present the theory of rational inattention (Section 2), survey applications of the theory by
field (Section 3), review the existing empirical evidence (Section 4), and discuss policy implications
(Section 5). Throughout the paper, we mention what we believe are the most fruitful steps for
future research in this area.

Economics is about adjustments to scarcity. Rational inattention studies adjustments to scarcity
of attention. Understanding how people select, summarize, and digest the abundant available
information is key to understanding many phenomena in economics. Several important results in
economics, even whole subfields, have been built around the assumption of imperfect or asymmetric
information. Nowadays, many more forms of information than ever before are available due to new
technologies, and yet we are able to digest little of it. Which form of imperfect information we
possess and act upon is thus largely not determined by which information is given to us, but by
which information we choose to attend to.

The way people deal with the abundant information has far reaching implications for:

e macroeconomics, because it forms our expectations, and thus affects the dynamics of prices,

consumption, and investment;
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finance, because it determines investors’ beliefs about asset returns, which in turn affect

portfolio allocations and asset prices;

labor economics, because it affects and directs the searches of both firms and job applicants;

behavioral economics, because it determines what simplifications we use and thus may explain

systematic biases in decision making;

political economy, because we pay little attention to facts when our personal stakes are low.

Let us give a few examples of the implications of rational inattention that we will describe in
greater detail below. In macroeconomics, rational inattention can explain why slow adjustment
of expectations and actions, such as prices and consumption, to some shocks can co-exist with
flexible reactions to other shocks. Rational inattention also predicts how the responses to shocks
depend on the environment, in particular on monetary policy, yielding lessons for optimal policy.
In finance, rational inattention tells us why portfolio under-diversification can be optimal, rather
than an anomaly, in a world with abundant information, and why contagion between markets with
unrelated fundamentals can arise. In labor economics, rational inattention leads to a theory of
attention discrimination, a form of bias that exacerbates statistical discrimination and taste-based
discrimination. This new theory has implications for how the society can counteract discrimination
in the labor market and other settings. In political economy, rational inattention explains how
systematic distortions can arise in a democracy when selectively ignorant voters interact with
politicians. Many insights from rational inattention have implications across fields. For instance,
rational inattention makes it precise why and in what circumstances private agents and policy
makers under-prepare for a rare event, be it a global financial crisis or a deadly pandemic, which
leads to lessons for how the society can prepare for and respond to a rare event.

The theory of rational inattention (following the seminal work of Christopher A. Sims, 2003)
provides a model of how cognitively limited people simplify and summarize available information.
It describes behavior that seems error-prone, yet the form of mistakes in final actions is subject to
agents’ choice; it is driven by agents’ preferences and the stochastic properties of the environment.
Rational inattention is motivated by the observation that people often cannot avoid mistakes due
to lack of information, but they can choose what to think about, what to pay attention to and to

what level of detail, i.e., what type of mistakes to minimize. People are inattentive; psychology
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and behavioral economics have been very successful in showing that humans’ cognitive limitations
are important for economic outcomes. But how do agents deal with their own cognitive limitations
when they are aware of them? How do firms act or how should policy makers act when facing such
agents? The next step is thus to study how the economic actors adjust to such frictions. We will
argue that rational inattention is a suitable model for doing so. See also Sims (2010), Wiederholt

(2010), and Veldkamp (2011) for reviews of the earlier development of the literature.!

2 Theoretical framework

Rational inattention, henceforth RI, builds on the observation that humans cannot pay full attention
to all available information, but can choose to pay more attention to more important things.

How does RI fit within existing theories? There exist several well-established models of imperfect
information. Many of them are based on imperfect information of an exogenously given form; this
is not RI. A large class of models describe information acquisition — agents’ choices of costly signals.
RI belongs to this family of models but its distinctive feature is that agents can choose to acquire
signals of any form. Any information is available, yet costly to process. We discuss this in more
depth in Section 2.4.

Consider a manager who sets a price to maximize profit. The optimal price depends on the
state of the world x, which describes the current market conditions (e.g., elasticity of demand and
marginal input cost). If z is observed, then an optimizing manager chooses deterministically the

price y that maximizes profit,
perfect information: = — y(x).

If the manager instead gets noisy information about z, then she chooses y that maximizes expected
profit. The form of noisy information that she gets exogenously determines what posterior beliefs

she may hold and what prices she sets, i.e., it determines the distribution f(y|z),
noisy information: = — f(y|z).

RI, however, allows for a more endogenous approach. The RI manager acts as if she were choosing

LGabaix (2019) surveys a related concept of inattention called “sparsity”. We discuss its connection to rational

inattention in Section 2.4.
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f(y|z).2 The choice of f reflects the manager’s decision of what information to receive, and describes
the form of pricing mistakes that she makes.

If she chooses not to get any information, then she selects an f(y|z) that does not depend on
z. In fact, f(y|z) is degenerate so that she selects one constant y for all z. If she pays positive
attention, i.e., gets some information, then f(y|z) varies across x. And if, for instance, she pays
more attention to = of low values, e.g., states of low demand, then pricing is more precise at these
levels of demand and f(y|z) is tighter for low xz. Making more accurate choices, however, takes

more effort, and thus more concentrated f(y|z) are associated with a higher cost.
RI: x — f(y|z), where f(y|z) is chosen optimally.

In a series of papers, Christopher A. Sims put forth two main cornerstones of RI as a model of

processing of available information:

1. The idea of selective and costly attention: Available information is not internalized informa-
tion. In principle we can have the whole Internet at our disposal, yet we choose to process
only a very limited amount of this information; we choose what questions we ask our friends,

or what to read about in the news.

2. A convenient modeling framework: A combination of the flexible choice of information with
a specific form of an entropy-based cost function. Sims (2003) formulates a dynamic model
where a single agent chooses how much information to process about different Gaussian
shocks. Sims (2006) emphasizes that in practice it is not only the amount of information
that agents choose but also the nature of information, both of which can be modeled by the
choice of f(y|x) subject to the cost of information. We show below that the flexibility of f,
perhaps surprisingly, often leads to higher tractability. While initially the models used an
entropy-based cost of information, the approach is also applicable with other types of the

cost.

In the purest form of rational inattention, an optimizing agent can choose from an unrestricted set
of Blackwell experiments f(y|z), subject to a cost of information.
In the rest of this section, we first formulate a general static model and discuss the main

properties of its solution. Next, we discuss the assumptions of rational inattention in more detail.

2She chooses what Blackwell experiment to run.
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Finally, we present results for a dynamic model and a model with a multi-dimensional state or

action.

2.1 Static model

Here we describe the general static model of choice under RI (see Matéjka & McKay, 2015).2 The
unknown random state is x, and the agent’s prior belief is given by a pdf g(z). The agent faces a

two-stage decision problem:

(i) What to pay attention to: The agent selects an information strategy to refine her belief about
the state. This is described by what signals s the agent gets for a given realized state z, i.e., by a
distribution fsz(s|z).

(ii) What action y to take: This is a standard choice under uncertainty with the beliefs generated

in the first stage via Bayesian updating.

The objective is to maximize the expectation of U(y,z) less the cost of information C(fs,),

which is a function of the information strategy. The timing is as follows:

1. The agent chooses the information strategy to maximize the expectation of utility less the

cost of information while considering the action strategy she applies later.
2. The agent receives a signal s, the cost of information is incurred, and her posterior is formed.

3. The agent chooses an action y. Because the action does not affect the cost of information,

she chooses y to maximize the expectation of U(y, x) given the posterior.

While the agent chooses two strategies, information (i) and action (ii) strategies above, it turns out
that a joint distribution f(y,z) describes both of the strategies as in Sims (2003) and Kamenica
& Gentzkow (2011). If optimal then the two strategies must be such that no two signals in step
2 lead to the same action in step 3, otherwise the agent would be wasting costly information by
distinguishing between two signals that do not change her actions.* We can thus make a one-to-one

association between s and y, and use f(y,x) only.

3See also Caplin & Dean (2015) where such a model is derived from revealed preference principles.
4This is subject to Blackwell monotonicity of the cost of information.
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The agent’s problem then is:
e [ Uly,0) (3. ) dody — C(P), 1)

subject to /f(y,:n) dy =g(z), Vz, (2)

where the first term in (1) is the expectation of U, and C(f) is the cost of information.® The
constraint (2) captures Bayesian rationality, requiring the consistency of prior and posterior beliefs.

While the cost of information C(f) could in principle take many different forms, following Sims
(2003) we now use C(f) = M (y; z),® where I(y; z) is the Shannon mutual information between the
random variables y and z (Cover & Thomas, 2006). Letting p(y) denote the marginal of y, mutual

information is defined as

I@@EH@—EWMM=/ﬂ%@m(£$&>m@, 3)

where H(z) is entropy of the random variable .7 In Section 2.4 we discuss the choice of a cost
function in more detail. For the moment, it suffices to say that I(y;x) measures the expected
uncertainty reduction about x due to knowledge of y, which is a common way to measure the

amount of information processed about x.

2.2 Solution, implications, and optimal biases

The first order condition to (1)-(2) implies that the behavior is probabilistic and follows a logit

model (Matéjka & McKay, 2015). For an unknown state x the distribution of actions is given by:
p(y)e? )

o) T (®

To connect this formula to the applied literature on discrete choice, let us state the resulting choice

flylz) =

probabilities in the case when the action set is discrete, y =i € {1,...,N}:

U(i,z)+a(i)
A

. e

P(ile) = =y vcamm (5)
. A

j:

1€

SFor simplicity here we use the imprecise notation using probability distribution functions only. See Jung et al.

(2019) for a formulation in terms of probability measures.
SHere we use a linear function of I for simplicity, other functions are possible, too. In fact, Sims (2003) used

a hard constraint on mutual information, I(y;z) < k, and a more general convex cost is also reasonable in many

settings.
"The entropy of x is H(z) = — [ f(z)log(f(z))dz.
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where (i) = Alog P(i) and P(i) > 0 is the marginal probability of the choice i.

Solutions to RI problems thus take a convenient analytical form and yet can exhibit rich be-
havioral properties. Utility enters in the logistic way, and all effects of beliefs and the choice of
information are summarized by the additive shifters «(7). The quantities (i) reflect biases towards
action ¢. The biases are independent of state x, but endogenous to the prior knowledge and pref-
erences that determine the agent’s choice of attention. See Matéjka & McKay (2015) and Caplin
et al. (2019) for how to solve for P(i) or a(i).® The full description of behavior is particularly
simple for a low number of possible actions or for quadratic utility when the prior g is Gaussian,

see the examples in Section 2.3.

As we will demonstrate in the examples, the implied features of the behavior of RI agents are
the following. Some of the features are direct implications of (4) and (5), while others are driven
by the choices of the unconditional probabilities p(y) and the resulting biases. At the end of this
subsection we discuss which of these implications are inherent to RI only and which to a more

general class of models of information acquisition.

(F1) Stochastic choice: RI agents make random mistakes. The mapping from the state = to the

action y is not deterministic.

(F2) Stakes and lower cost of information increase responsiveness: Scaling up the utility func-
tion or down the cost of information A\ implies that the action y becomes more responsive to the

state x.

(F3) Logistic choice with biases is the exact optimal form of behavior for any utility function and
prior beliefs, and it is implied by the entropy-based cost of information. This makes the RI model
tractable, and potentially amenable to empirical applications. Consider a discrete choice problem.
If all alternatives ¢ = 1,..., N happen to be equally attractive a priori, then the probability of

choosing a specific alternative ¢ conditional on state x takes exactly the standard logit form. If one

8The solution in the discrete action case satisfies
QU (12) /2
/z Z;V:l p(j)eUu,z)/Ag(

z)dr =1, (6)

for all ¢ such that P(:) > 0. Notice that this condition says that the posterior distribution P(xz|¢) needs to integrate
to 1. Caplin et al. (2019) show that for P(i) = 0 the LHS of the equation above is less than one and that the two

conditions together are sufficient and necessary.
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alternative ¢ seems more attractive a priori, then the agent chooses to pay attention in such a way
that the bias towards this alternative a(i) has the same effect as a positive utility shock (i) in
each state.? This bias towards a specific alternative is endogenous and changes with the choice set,
the prior, the utility function, and the cost of information.

The sophistication in the choice of a distinguishes RI-logit from the standard logit or from any
information acquisition of a fixed form. Comparative statics are very different anytime the prior

(and preferences) or the choice set change, because o changes too.

(F4) Gaussian signals: In a continuous choice problem with an unbounded action set, y € R,
quadratic preferences U(y, z), and Gaussian prior uncertainty g (x), Gaussian signals are optimal.
A large part of the literature following Sims (2003) works with Gaussian signals, because they
often yield tractable solutions - the action y depends on the state x linearly. In general, the form
of signals depends on the form of U(y,z) and reflects what types of imperfections in beliefs it is

most important to refine.

(F5) Magnified relative elasticities: RI agents pay attention to important variables, which in
relative terms makes them even more important than under perfect information.

(F6) More attention to more volatile variables: RI agents pay more attention when prior un-

certainty is larger.!°

(F7) Categorization, discreteness, and consideration sets: RI agents most often find it optimal
to contemplate a low number of actions only.!' This is the case even for continuous action sets,
where the resulting set of possible actions is discrete - for instance when a price setter can choose
any price, but keeps alternating between two fixed levels, e.g., a regular and a sale price. If the
agent chooses to focus on some actions only, she does not waste information capacity on small
movements, and is thus less likely to make larger errors. For a sufficiently high cost of information

or a sufficiently strong prior, the agent may even consider only a single action.

(F8) Violations of revealed preference: RI can imply choices that are seemingly irrational. This

can be driven by the fact that changing the choice set can induce RI agents to pay attention

9See Fosgerau et al. (2020a) for generalizations of the choice formula for costs beyond the mutual information.
108ee for instance Mackowiak & Wiederholt (2009) where price-setters pay more attention and respond more

strongly to firm-specific shocks because they are more volatile than aggregate shocks.
" Matéjka (2016), Caplin et al. (2019), Jung et al. (2019), Stevens (2020).
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differently, albeit optimally. If signals are endogenous to what options are presented to the agent,

then transitivity in choice can be violated.'?

(F9) Posterior invariance: As long as the number of possible states is no larger than the number
of alternatives, then the set of possible posteriors the agents can acquire is often independent of

small changes to the prior. This feature is useful for solving models with RI.!3

(F10) Multi-dimensional simplification - indexation: If agents need to pay attention to several
shocks and choose multiple actions, then RI models what kind of simplified representation of this
high-dimensional environment the agents use. A consumer may choose not to attend to all prices
of all products, but might compare only close substitutes, because that is the most useful piece of
information determining what to buy, keeping the total consumption fixed. Or an investor agent
pays attention to a particular linear combination of the asset prices only, i.e., to an endogenously

constructed index, and then purchases or sells the whole portfolio given by the index.™

Feature (F1) would hold in any model of imperfect information with noisy signals, and (F2)
emerges in most models of costly information acquisition. The other features need more flexibility
of what type of information can be acquired. Features (F5), (F6) and (F8) require a finer model of
costly information acquisition where the agent can choose to acquire signals of different precision on
different shocks. Finally, (F3), (F4), (F7), (F9), and (F10) require the high flexibility of information
choice under RI and (F3) and (F4) require the specific cost function. For other costs of information,
(F3) would instead state some other form of under-reaction to shocks. RI thus shares some of the
main features with other models of costly information acquisition, but gives less discretion to the

modeler over what information is available.

2.3 Examples

We now present two canonical examples that highlight the interaction between preferences and the

form of attention that agents choose to pay.

2Woodford (2012), Matéjka & McKay (2015).
13Caplin et al. (2017).
HMEylton (2017), Készegi & Matéjka (2020), Miao et al. (2020).
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Figure 1: Probability of accepting the candidate, P(1|x). Solid: symmetric attention, dotted:

symmetric but less attention, dashed: biased attention.

2.3.1 Discrete choice: logit and biased logit

We start with a simple binary-choice problem. Consider an employer who is facing an applicant for
a job opening, and is deciding whether to hire the applicant (¢ = 1) or not (¢ = 0). The unknown
state x summarizes the applicant’s quality and has a prior distribution g(z). Utility from accepting
the applicant is equal to = (U (1,z) = ), while utility from rejecting the applicant equals a known
reservation utility R (U (0,z) = R).

The employer chooses to process information about the applicant that results in a behavior

according to (5):
z+a(l)
e

z+a(l) R+a(0) © (7)

e X e X
To fully characterize the choices, we still need to find «(1) = Alog P(1), where P(1) is the uncon-

P(l|z) =

ditional probability of accepting the applicant. This is easy in the case the prior g(z) is symmetric
about R, i.e. g(R+ x) = g(R — z). In this case it must a priori be as likely that the applicant is
accepted as rejected, a(1) = a(0), and the choice behavior takes the standard logit form:

ex/A

(F1) Stochastic choice: The solid line in Figure 1 shows the probability (8) of accepting the
candidate conditional on the state. Under unlimited information-processing capacity, the probabil-
ity jumps from 0 to 1 at z = R. Under rational inattention, the probability of hiring is smoothly
increasing in the state. Choice is stochastic conditional on the state and firms make mistakes. How-

ever, the employer pays attention in such a way that it rarely misses great opportunities (z >> R)
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and rarely makes horrible hires (x << R), but frequently makes mistakes when confronted with
a marginally profitable opportunity or a marginally unprofitable opportunity (z close to R). The
signal that generates these choice probabilities is a signal that announces whether x exceeds R and
is more likely to be correct when the absolute value of © — R is larger.

(F2) Stakes and cost of information: Scaling down stakes (multiplying U (1,x) and U (0, ) by
the same constant smaller than one) and scaling up the cost of information A\ moves the response
closer to a constant, see the less steep dotted line in Figure 1. This is because employers choose to
pay less attention to the state and thus are more likely to make mistakes conditional on the state.

(F3) Biased logit: In this example with a symmetric prior, choice behavior takes the standard
logit form, but if g(x) is asymmetric, which means that the employer a priori believes that the
applicant’s value is more likely to be either above or below the reservation utility, then the endoge-
nous biases a enter. The reason for the asymmetric prior could be that the employer has already
conditioned on known characteristics of the applicant such as gender or race. The exponents in the
logit formula now include x + «(1) — «(0). The employer acts as if the true utility provided by the
applicant were different by a shifter «(1) — a(0). The dashed line in Figure 1 shows the resulting
choice probability if the bias towards accepting the candidate were positive. The choice behavior
becomes logit with bias.

For some g(z) it is easy to solve for o analytically.!® Furthermore, computing o numerically is
usually straightforward. In Figure 1, we have shifted the prior to the right. The employer now a
priori believes that the applicant’s quality is more likely to be above the reservation utility. The
bias becomes strictly positive, (1) — a(0) > 0, and the probability of hiring is increased for each
x.

To illustrate the magnification effects of RI, feature (F5) in Section 2.2, it is useful to plot
the bias directly. Figure 2 shows the bias for the example given in footnote 15 as a function of
E [z] — R. If the expected value of quality of a group relative to R is increased, then not only z itself

increases their chances of being accepted, but the additional bias a(1) — a (0) towards that group

5For example, for x € {R - %,R—&— %}, we get from (6):

R+1 R+1
5 (—ek 4T =g ba(-Ded)

1 Rty Rt3 ’
ex —e X —1+e x

P(l) =max | O,min | 1, —
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Figure 2: Attention-driven bias towards accepting the candidate.

is also higher. In Figure 2, if the values in such a group are increased relative to R by 0.2, then the
attention-driven bias equals about 0.1, and for the change relative to R of 0.35, the additional bias
is 0.5.

If the expected value relative to R is sufficiently high or low (about 0.4 in the figure), then the
employer chooses to pay no attention, and simply accepts or rejects the applicant based on the
prior. The employer does not consider the other alternative at all (feature F7 in Section 2.2).

The RI behavior takes a logit-form, but with adaptive biases that summarize heuristics that the
agent chooses to use, i.e., strategies based on less-than-full information that are optimally tailored
to the environment. The sophistication in the choice of o distinguishes RI-logit from the standard
logit or from any information acquisition of a fixed form. Comparative statics are thus very different
anytime the prior (and preferences) or the choice set change.

Debreu (1960) criticized the standard logit-behavior using a thought experiment with two dupli-
cate alternatives (the “red-bus, blue-bus problem”). He pointed out that in this case the property
of independence from irrelevant alternatives (IIA) is unappealing - if people choose the train and
the bus both with the probability of 1/2, then after addition of the second bus the probabilities
should not be 1/3 for all three alternatives, but 1/2 for the train and 1/4 for each of the buses. The
ITA does not hold in the RI model. The sophisticated RI agent would have no reason to distinguish
between the two buses, and the resulting probabilities would be 1/2, 1/4 and 1/4, exactly as Debreu

found preferable.!©

16See Matéjka & McKay (2015) for a more detailed discussion of this example.
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2.3.2 Quadratic-Gaussian case

We now explore a situation where actions are continuous, and the losses from imperfect information
depend on the conditional variance only.
Consider a manager who sets a price y to maximize profit subject to unknown current market

conditions, x (Mackowiak & Wiederholt, 2009, Wiederholt, 2010). Let the utility be

Uy, z) =—r <ax — y)Q, (10)

which can be derived from a log-quadratic approximation of the profit function, where ax is the log
of the target price. The agent needs to pay attention to x, which can be a deviation in marginal
cost and translates into an optimal deviation in price. The parameter a denotes the elasticity of
the target price to the shock x - under perfect information it would equal the elasticity of y to x.
The parameter r scales stakes.

Let the agent’s prior g(z) be Gaussian:
x ~ N(0,02).

This is a popular specification because with quadratic preferences, Gaussian prior uncertainty, and
an unbounded action set, Gaussian signals are optimal. For quadratic U(y,z), the distribution
proportional to eV®*)/A is Gaussian. Therefore, if p(y) is Gaussian, then equation (4) implies that
f(y, z) is jointly Gaussian as well. This is a fixed-point problem: take p(y) and generate f(y,x) via
equation (4). The marginal of the resulting f(y, ) must be the pdf p(y) above. It is straightforward
to show that such p(y) exists, and uniqueness implies that this must be the only solution.'” Hence,
Gaussian signals are the unique solution (feature F4 in Section 2.2).

Therefore, the objective (1) with the utility (10) takes the form:

by 2
max F, [ES [—ra®(z — E[x\s])ﬂ} — M (y;2) = max (—m202 — —log &>, (11)
02| <o2 02‘ <02 ols 9 O’i|S

where afds denotes the posterior variance. The first term on both sides of the equation is the

expected utility, and the second is the cost of information. The entropy H(-) of a random variable

2

drawn from a normal distribution with variance o is %log(27r602).

17See Matéjka & McKay (2015) for uniqueness statements.

ECB Working Paper Series No 2570 / June 2021 16



Upon reception of a signal (which here has the form s = x + ¢ with a Gaussian €), the action
y = aF[zr|s] maximizes the expectation of (10) for any given posterior belief. Bayesian updating

with Gaussian prior uncertainty and signals delivers linear dependence of E[z|s] on z,
Elzls| = (1 =) +&s = {(z + o),

where Z is the prior mean of x and the weight on the signal, £ = (1 — ai‘s/og) € [0, 1] reflects the

chosen level of attention.'® Therefore,

y = (ad)z + (ad)e, (12)

where (af)e is the resulting noise in actions. Notice that (12) describes a jointly-normal distribution
of y and z, the object f(y|z) discussed above. If £ = 1, then the agent pays full attention, and thus
y = ax; £ = 0 means no attention and no response to x.

We can now rewrite the problem (11) in terms of the choice variable .

A 1
_ra2(1 — 2_ 4
grél[%ﬁ]( ra“(1 —&)o; 5 log 1_€>. (13)
The solution is
A

The formula (14) together with (12) illustrates some of the general features of the solutions to RI
problems that were summarized in Section 2.2:

(F1 and F3) Stochastic under-reaction: Realized prices move on average less than optimal prices
because the prior matters. If A > 0, then the agent under-responds to the realization of x, because
a&é < a. She does not get perfect information about z and thus puts a positive weight on the prior
knowledge. This effect drives Sims’ initial motivation for RI as a micro-foundation for sluggish
behavior.

(F2) Stakes and cost of information: Higher stakes r and a lower cost \ increase responsiveness.

(F5) Magnified relative elasticities: RI magnifies differences in responsiveness to different shocks.

Consider two different products with elasticities a1 > ao; under RI the relative elasticities are

a1§(a1)
a2¢(az2)

convex in the elasticity under perfect information.

> Z—; The elasticity under RI is a€, and since ¢ is increasing in a, the realized elasticity is

2 2 _2
18 ¢+ e . . . . 2 _ og0f
&= FeRwet and the posterior uncertainty is o7, = Pl
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Binary actions Finer actions and uniform losses Costlier uncertainty about negative x

Figure 3: Collections of posteriors for various types of choice problems.

(F6) Uncertainty increases responsiveness: The higher the uncertainty about the target price,
the more attention the price-setter pays to shocks and the more elastic the response is, i.e., £ is

increasing in the prior uncertainty o2.

2.3.3 General preferences

In general, the form of signals depends on the form of U(y,x). It reflects potential losses from
misinformation about x and thus what types of imperfections in beliefs it is most important to
refine. When actions are binary, as in Section 2.3.1, then the agent chooses to collect information
that yields threshold-like posterior beliefs, see the left exhibit in Figure 3. Let « measure the utility
gain from choosing one alternative over the other. The agent then either finds out that x is most
likely positive, and chooses that alternative, or negative, and chooses the other. Any additional
information including information on the size of the difference in utilities is wasteful.

In other cases (such as when utility is quadratic and the action can be selected from a continuous
interval, as in Section 2.3.2) RI agents do choose to pay attention to the level of x. The optimal
signals then typically lead to posteriors such as those in the middle exhibit in Figure 3, where the
agent can distinguish between different levels of x albeit imperfectly.

Notice however, that in the case of quadratic utility, the losses are given only by posterior
variance of x, the level of x itself does not affect how significant a given level of uncertainty is,
and thus the agent pays equal attention to all levels of x. The situation is different if the losses
are higher for negative x. For instance, if x is an unknown bank account balance, then the RI
agent might choose to pay more attention to negative balances, when she could be subject to high

fees. She would, for instance, read in more detail if the balance started with a minus sign, or were
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written in red ink. The resulting posterior beliefs would be more precise in such cases, see the right
exhibit in Figure 3. In general, there are as many posteriors as different actions, and they have a

form oc eV ®:2)/A,

2.4 Discussion

In this subsection we answer several questions that we have encountered over the years. Some of the
questions address what rational inattention is and what it is useful for, while others are criticisms

of RI.

2.4.1 Assumptions of RI

What is the definition of RI? Is the use of entropy crucial? We think of the model
consisting of equations (1)-(3) as the benchmark static RI model. This model formalizes the
following three main assumptions of RI (where we view the first two as the main assumptions).

(A1) Information is available in a wide variety of forms. This is reflected in model (1)-(3)
by the agent’s ability to shape signals in any way she chooses, i.e., she can choose any Blackwell
experiment f(y|z).

(A2) Agents choose information optimally, reflected by the optimization of the distribution f.

(A3) The cost of information is measured by mutual information I(y;x). This assumption is

not crucial, and can be relaxed.

While the model consisting of equations (1)-(3) is the “pure form” of RI, models with cost
functions other than mutual information and models with some restrictions on available signals can
also be viewed as RI.

We conjecture that RI models best describe repetitive decisions with a great deal of available
information. In such decision situations not only can agents choose any pieces of information that
they wish, but they are also more likely to use the optimal information strategy. On the other hand,
decision situations that the model fits less clearly are new and quick one-time decisions, because
they probably feature violations of (A2). If information is available in fewer forms (violation of
(A1)), this can be incorporated by adding a constraint to model (1)-(3) specifying the available
signals (see for instance Mackowiak & Wiederholt, 2009, or Van Nieuwerburgh & Veldkamp, 2010).
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When is information available in a wide variety of forms, and when is it not?
Humans often have flexibility in shaping the information that they get, but sometimes they cannot
shape it in exactly the way they would like. The assumption (A1) is the main distinction between
RI and other models of information acquisition, which typically allow for one form of information
only, see Section 2.4.3.

For many types of information we have the whole Internet at our disposal, where the flexibility
is large. Such information includes movements in financial markets, most macroeconomic or even
political data. On a more individual level, employers can get information about job applicants from
structured CVs, and we can all judge the state of our finances using apps on our cellphones. Very
often we can also ask questions of exactly our choice, which determine the form of answers we can
get be it from an expert advisor or a sales representative. RI could also potentially be a proxy for
directed thinking; the formation of signals is then internal, within the agent’s mind.

In some situations, however, information is not available or it is available only in a particular
form. Think about future financial shocks that have not been realized yet, or about a product that
you contemplate buying on a flea market where you need to rely only on a visual perception of its
exterior. When products are not presented on the internet, we often need to journey to the store
at a considerable cost to acquire information. Sims (2010) gives the example of a prospector who
wants to find out if there is oil underground or not. The prospector needs to drill a test well and
see. No other signal is available, and the main cost is the physical cost of drilling a test well. A
model of information acquisition with an observation cost is more appropriate in this case. Agents

can not always obtain information in exactly the optimal form given by equation (4).

How can RI agents choose the information strategies optimally when they are
cognitively limited? We consider RI to be an “as-if model” or a benchmark that applies well in
repeated choice situations, or in choices over the long term. In these cases, the agent thinks about
the optimal strategy once, and then applies it many times with little additional effort. Alternatively,
it can be a strategy that the agent gradually learned through experience or stumbled upon it due
to some evolutionary reasons.

It is likely that when it comes to our everyday consumption decisions, we know what information

is useful for us to decide well. For instance, in a country with low and stable inflation, it makes
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sense to pay closer attention to own nominal income than to general inflation, which would matter
as much in perfect-information models. When an HR manager inspects hundreds of CVs a day, she
knows which pieces of information on the CV are the most important, and perhaps looks at those
only. Similarly, when driving a car we know where to look for traffic signs, and which of them to
follow more closely. But what if a car in front of us punctures a tire and spins out of control? It is
unlikely that we will quickly choose precisely those pieces of information that would be most useful

to assess what to do in that situation.

How can RI agents have accurate priors? How can they know the correct model and
the distribution of shocks? For many settings, this seems a good benchmark. But importantly,
RI does not require correct priors. The prior g (x) does not have to equal the true distribution of
x. If the agents have incorrect priors, then the model works just as well. But with RI the incorrect

priors affect the choices of attention strategy, too, and can thus be even more detrimental.

Why use entropy? Is the use of entropy not arbitrary? We view entropy as a good
benchmark, which is supported by theoretical arguments. At the same time, entropy is certainly
not universally valid and recent theoretical and empirical work has been exploring alternatives.

While we do not intend to argue for a universal application of entropy, we think that entropy is an
appealing benchmark, similar to the Cobb-Douglas production function. The main reasons for that
are: (i) entropy allows for tractability, (ii) most of its qualitative properties are reasonable (more
precision at a higher cost), and thus many qualitative implications of the model are independent
of this particular choice, (iii) the foundation on optimal coding and also the axiomatic foundations
of entropy suggest that it is a suitable function for processing of available information (Shannon,
1948, Cover & Thomas, 2006).

The description of the cost function in assumption (A3) is related to what information is avail-
able. In fact, the entropy-based cost is exactly in line with the assumptions of full availability and
flexibility, (A1) and (A2). It was shown in the literature on information theory!'® that mutual in-
formation (3) is exactly proportional to the expected number of signals or symbols that need to be

received to acquire the desired information. If the incurred cost is then proportional to this number

198ee MacKay (2003) for a textbook presentation of optimal coding and information theory.
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(due to effort devoted or time spent), then it is proportional to expected reduction of entropy, too.
The important assumption is the possibility of optimal coding of information, for which (A1) and
(A2) are the necessary prerequisites.

Entropy is also linked to the optimal sequencing of such independent pieces of information,
which is related to (A2). In information theory, if a message is coded optimally, then entropy
describes the best and also an achievable bound of what can be communicated in an interval of
time (see for instance MacKay, 2003).

The axioms that entropy is built on are monotonicity, continuity, and some form of the possibility
of independence of different pieces of information (Shannon, 1948). The remaining axiom, which
distinguishes entropy from other reasonable cost functions, says that the cumulative amount of
information is the same in the following two cases: (i) the agent finds out directly which state
has occurred, and (ii) the agent learns which subgroup of states has occurred, and then finds out
which state within the subgroup has occurred. This axiom provides certain additive properties that
help with tractability, and it is linked to the availability of information (assumption (A1l)). The
axiom implies that the agent can obtain some information about a subgroup without getting more
information about states within the subgroup. In reality, this kind of information may not always
be available.

Entropy as a cost function is thus likely to be reasonable when information is presented in an
optimal way, when we can ask questions of our choice, when a product’s structured description
gives prominence to important features or when the buyer knows the structure and can choose
what to look at, etc.

On the other hand, some early pieces of empirical evidence suggest that other cost functions
might be more appropriate especially in the case of perceptual situations. Woodford (2012) discusses
how in an experiment by Shaw & Shaw (1977) subjects make larger errors when a signal appeared
in an unusual location, while with entropy, errors would be independent of the likelihood of the
location. This experiment highlights violation of optimality of information (Al, A2), or of the
optimal coding, since here subjects need to scout the whole screen with their eyes, while an optimal
signal might be the signal in the middle of the screen. Similarly, Caplin & Dean (2014) and Dean
& Neligh (2019) run a perceptual experiment, where subjects need to assess a number of balls.

Distinguishing between 49 and 51 balls is much more difficult than between 10 and 90. Entropy
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does not apply if the agent needs to count the balls one by one while knowing the total number
is one of the two possibilities only. Entropy would apply better if the agent could ask someone
knowledgeable “there are more balls of which color?” or if the number of balls with different color
were written on a screen for the agent to see. Both cases would then be equally difficult to assess,
since they allow for the optimal piece of information given the task at hand.

In practice, information is not always fully available, and often we get it from perceptual senses,
too, e.g., by judging sizes of houses when we infer how wealthy a neighborhood is. It is not clear
yet what cost function is the most appropriate one. Moreover, most likely there are different cost
functions appropriate in different choice situations. Caplin & Dean (2015), Matéjka & McKay
(2015), De Oliveira et al. (2017) and Ellis (2018) provide axiomatic foundations of RI using various
revealed preference approaches.?’ Caplin et al. (2017) provide a characterization of a generalized
model of RI with state-dependent stochastic choice data. In computer science, it was shown that
entropy-cost emerges as an achievable bound in repetitive information processing (Shannon, 1948,
Cover & Thomas, 2006). Hébert & Woodford (2019) and Morris & Strack (2019) generalize these

findings and relate a micro-founded cost function to the cost of sequential sampling.?!

Does it matter if one uses entropy or another cost function? It obviously matters
for fine details of the decision making. But for many qualitative implications it does not. Often a
model relies on a mechanism such as “agents get more information about more important shocks,
and thus they respond to them more than to less important shocks,” and predictions of this kind
will be largely invariant to substituting other reasonable cost functions for entropy.

The cost function can make a difference in a strategic setup. Morris & Yang (2019) find that how
costly it is for agents to distinguish between nearby states is crucial for multiplicity of equilibria.
Van Nieuwerburgh & Veldkamp (2010) show that whether investors under-diversify or not depends
on the form of the cost function they face, i.e., if the cost is sufficiently convex then focusing
on more assets can be detrimental. Angeletos & Sastry (2019) show that certain amendments of
the Welfare Theorems hold for competitive markets with RI agents if attention costs satisfy an

invariance condition, which is satisfied by the entropy-based cost function.

20See also a related work of Manzini & Mariotti (2014).
21See also Pomatto et al. (2018), Hébert & Woodford (2020), Zhong (2017), and Cerreia-Vioglio et al. (2020).

ECB Working Paper Series No 2570 / June 2021 23



2.4.2 Specific modeling choices and common issues of RI

An endowment of information-processing capacity vs. a cost function Sims (2003)
uses a capacity constraint, i.e., a strict limit on mutual information I(y;x) < k, while most of the
recent literature uses a linear cost in I(y; x), as we do here in (1). In a static setup, these problems
are dual to each, and thus the solution for a fixed budget also takes the form of (4), only A is then the
endogenous shadow cost of information. Allowing agents to choose the total amount of information,
not just its form, seems more realistic or in line with the idea of endogenous information, and also
allows for more tractability, because then A in the logit formula (4) is exogenous. At the same time,
in practice due to fatigue or decreasing marginal returns on time devoted to other activities, the
implied appropriate cost can be convex in entropy, or in another measure of information.

For instance, Mondria & Quintana-Domeque (2013) show that investors’ limited information
capacity can generate financial contagion, which is driven by attention relocated from a healthy
market to a distressed one. They use a fixed limit on the amount of investors’ information, while

with the linear cost the two markets would be independent.

In equilibrium analysis & la Grossman & Stiglitz (1980), do RI agents observe
prices? The purest form of RI treats prices just as any other piece of available information.
Agents can choose to look at them in more or less detail, or not at all. If market prices move
continuously, we do not follow them perfectly every millisecond, even if the numbers are right in
front of us on a computer screen.

While some papers study the implication of consumers’ inattention to prices (Matéjka, 2015,
Mackowiak & Wiederholt, 2015), other papers with financial applications do assume that infor-
mation contained in equilibrium prices can be acquired and processed for free to highlight that

acquiring and processing this kind of information is easier.

Is noise in signals independent across agents? RI models with multiple agents typically
assume that signal noise is independent across agents. The assumption of independent noise seems
appealing when the main information constraints are cognitive, i.e., driven by mental limitations
of agents’ minds, and different agents can thus process the same headline differently. A different
question is whether agents have an incentive to learn about endogenous outcomes that are orthog-

onal to the exogenous state. For example, do agents want to learn about other agents’ signal noise?
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Hellwig & Veldkamp (2009), Afrouzi (2016), Denti (2019), and Hébert & La’O (2020) study this

question in detail.

How do inattentive agents satisfy a budget constraint? In existing models with RI, a
budget constraint typically holds because a residual variable adjusts to satisfy it.?? For example,
a household imperfectly aware of its income chooses consumption, and the household’s saving
(the balance in its checking account) adjusts so that the period budget constraint holds. Some
substantive predictions may depend on whether one assumes that the residual variable is saving or
consumption. Another possibility is to explicitly model insolvency and bankruptcy. In the simplest
way, the utility of exceeding the budget constraint can be set to minus infinity, or it can be reflected
in the agent’s objective by describing more some sophisticated institutional features of insolvency or
bankruptcy. The optimal information acquisition strategy f(y,x) then reflects the need to satisfy
the constraint in line with the degree of the disutility from exceeding it. Finally, the modeler can
impose a hard budget constraint as a restriction on f(y|z). The model (1)-(3) is solved with this

constraint in Sims (2006).

Several papers assume that agents obtain independent signals about independent
sources of randomness. Is this consistent with the idea of a flexible choice of infor-
mation? Mackowiak & Wiederholt (2009) or Van Nieuwerburgh & Veldkamp (2010) use this
assumption. It is true that this is a departure from the assumption (Al). For instance, the agent
needs to get separate signals on x1 and xs, from which she can infer x; + 2, but cannot get a
signal directly on x1 + x2 only. This assumption can be plausible in some contexts, it can make
equilibrium analysis more tractable, and substantive conclusions may change little if it is dropped

(see, for example, Mackowiak & Wiederholt, 2015, Section 6).

Would one not get the same outcomes if one simply assumed the information struc-
ture that RI agents choose in equilibrium? In a non-strategic setup, the answer is yes, but
RI agents typically choose signals that are different from the ones assumed in models with an ex-
ogenous information structure. Moreover, comparative statics are different, because as the decision

problem changes, the optimal allocation of attention changes.

Is RI not a vacuous model that is so flexible it can explain anything? Can it

be rejected? Yes, it can be rejected as it provides numerous testable implications that were

22The same point applies to other standard constraints.
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presented in this section. See also Matéjka & McKay (2015), who characterize the model with
mutual information, and Caplin & Dean (2015), who show how several features of the model can
be tested even for a broader class of cost functions. In principle, the cost function can be identified

from sufficiently detailed choice data.

2.4.3 Connections to other approaches

Is RI not the same as information acquisition, which has been around for a long
time? We think that RI advances the literature on information acquisition in a similar way to how
rational expectations advanced the early literature on dynamic models with a constant marginal
propensity to consume.

Most existing models of information choice make very restrictive assumptions. For instance, a
common assumption is that agents learn nothing about the realization of the payoff-relevant state
and, if they choose to pay a fixed cost, they learn everything. As another example, the island model
of Lucas (1973) assumes that the only information that price setters see about current conditions
is the price in their specific market (all other information has an infinite cost). Such restrictions
can sometimes be convenient because they lead to transparent and tractable models. On the other
hand, humans can often in practical situations get information of more forms than of just one (and
choose which), and model outcomes and policy implications in the existing literature may depend
critically on the very restrictive assumptions. By modeling information choice as flexible, RI aims
to reach more robust conclusions.

The friction that RI formalizes is agents’ limited ability to process freely available, easily ac-
cessible information (see the opening quote by Herbert A. Simon on page 3). It is not the lack of
publicly available information and not the monetary cost of acquiring information. Moreover, the
earlier literature on information acquisition places many restrictions on the information that agents
can acquire and thereby on the posteriors that agents can achieve, while RI gives agents flexibility
through assumption (Al).

For instance, in Diamond (1971) buyers have to search for prices observing them one by one,
which then leads to the famous Diamond paradox and monopoly equilibrium prices. RI buyers
could instead choose to compare prices of several stores at once, even if imperfectly, which would

lead to positive markups that would be increasing in the cost of information (Matéjka & McKay,
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2012). Both types of the assumptions are somewhat extreme in this case. While rigid assumptions
of what form information can take more often lead to various paradoxes, in practice unless shopping
on the Internet, prices about all products are certainly not equally and simultaneously available as
RI assumes.

Similarly, an investor in the model of Grossman & Stiglitz (1980) can choose to observe an asset
return at a cost or not at all, while RI investor could choose a precision of signals but also whether
the signal should be on one asset or on performance of some index of interest (Van Nieuwerburgh
& Veldkamp, 2009). For some questions of interest the simple cost of observation is a sufficient
modeling device, but for some others such as for studying finer heterogeneity across investors, or
the co-movement of allocations, it is not. Yang (2020) finds that flexibility of information can
lead to very different optimal design of financial securities. The reason is that flexible choice of
security with inflexible information (e.g., with observation cost only) generates optimal securities
that heavily exploit the limits of information acquisition.

In the sticky information model of Mankiw & Reis (2002), agents get perfect information infre-
quently and no information in between. This assumption yields a tractable model that can be used
to study the dynamics of the macroeconomy (see also Reis, 2006a, and Reis, 2006b). The decision
making at the level of an individual, however, is very different from RI. RI agents typically choose
to collect information gradually in a dynamic setting, and they differentiate between attention to

different variables.

Why connect RI to behavioral economics when RI agents are so ultra rational?
We do not necessarily think that realistic human beings solve complicated optimization problems.
The assumption of optimality of information subject to an explicit cognitive constraint yields an
“as-if” model that lets us study the endogeneity of the behavioral aspects of decision making. In
practice, many decisions seem sub-optimal, but the errors can still be subject to choices - one can
often work hard to decrease errors, e.g., think harder about the problem at hand, but there is a
trade-off, such process is costly. This is a very broad point that makes RI an inevitable step in this
field to explore.

In fact, some of the recent models in behavioral economics do not directly work with the notion

of imperfect information, but their motivation as well as implications are very similar to those of RI.
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In the model of sparsity (Gabaix, 2014), agents choose costly loads of responses to shocks. In the
case of quadratic preferences and Gaussian prior uncertainty, sparsity is very similar to RI, because
RI also predicts costly linear loads and also the possibility of complete inattention, see equations
(12)-(14). The main differences arise when the optimal action depends on multiple shocks - in that
case while sparsity assumes a particular base of shocks, RI derives it. See for instance the solutions’
feature (F10) in Section 2.2: let p(1) and p(2) be prices of different goods, while in sparsity agents
respond to p; and ps, perhaps with different strength, RI agent can choose to respond directly to
(p1 — p2). See Section 2.6 below. RI is invariant to transformations of variables of the state-space,
while sparsity is not. In general, predictions of sparsity and RI can be quite different, because
predictions of RI go beyond linear loads, i.e., the logit model and discreteness of actions.

A model of focusing (K&szegi & Szeidl, 2013) is also closely related to RI. It assumes that agents
that assess different alternatives with multiple attributes put more weight on attributes that differ
across various alternatives more. The model can explain several behavioral puzzles. This type of
behavior can also be microfounded by RI. See the implication (F6) in Section 2.2, i.e., that higher
volatility draws attention. RI would imply the model of focusing in ex-ante manner, since expected
differences matter for allocation of attention. If RI agents expect that a particular attribute has
higher dispersion, then they choose to pay more attention to it, which results in the higher load
and thus also a higher weight on it.

Of course, there are many findings in behavioral economics that RI cannot replicate, and even

attention is often driven by forces that are better understood outside of a rational model.

2.5 Dynamic model

Sims (2003) studied dynamic RI problems. RI generates inertia in actions, but the information
choice of RI agents with memory is also forward-looking.

We present results on dynamic RI problems by starting from a simple example and then
discussing generalizations. We build on the quadratic-Gaussian (QG) example of Section 2.3.2.
The agent’s flow utility in every period ¢ = 1,2,... depends on the action y; and the state xy,
Uy, zr) = —r (2 — yt)2. The payoff-relevant state, x;, follows a Gaussian stochastic process,
e.g., a Gaussian AR(p) process. The agent’s information set in period t consists of the new signal

received in period t and the previous period’s information set due to memory, Z; = 7,1 U {s;}.
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Let 2t = (1—p, ..., %0, Z1,...,2¢) denote the history of payoff-relevant states including initial
conditions, and let s' = (s1,...,s;) denote the history of signals. The agent chooses an information

strategy — a distribution of s; given x!

— and an action strategy — an action y; for given Z;. The
optimal information strategy maximizes the expected discounted sum of payoffs less the cost of

information, C (f):

E

o0
- Zﬁtr (2t — yt)2] - C(f)
t=1
subject to the law of motion for the state
Ty = Q1041 + ... + PpTp_p + V4,
with 1y ~ i.4.d.N ((), Jg), the definition of the information set
7 :I()U{Sl,...,st},

and the optimal action strategy

yr = E[xe|Zy] .
Popular specifications of the information cost in the dynamic setting are C' (f) = /\limTHoo%I (CCT; ST)
(e.g., Section 4 of Sims, 2003) and C (f) = AY_;2, 81 (2%; s¢|Z4—1) (e.g., Sims, 2010) where A > 0
is the information cost parameter.

Mackowiak & Wiederholt (2009) assume that (x¢,s;) follows a stationary Gaussian process.
They also assume that, after the agent has chosen the information strategy in period ¢t = 0, the
agent receives a long sequence of signals in period zero such that the conditional second moments
of the state vector (z¢,...,2¢—pt1) given Z; are independent of time. Under these two assumptions,
several different formulations of the dynamic RI problem are equivalent. The two information cost
functions mentioned in the previous paragraph coincide (Mackowiak et al., 2018) and the decision
problem stated here is identical to the decision problem in Section 4 of Sims (2003).

If the state follows an AR(1) process (p = 1) the solution is very simple. The optimal signal
is 54 = ¢ + € with ¢ ~ 1.2.d.N (0,03) (Mackowiak & Wiederholt, 2009). That is, the RI agent
behaves as if he or she observes the current payoff-relevant state with i.i.d. noise and takes the
action E [x¢|7;] = Ks; + (1 — K) E [x¢|Z;—1] where K is the Kalman gain. Delay in actions arises

due to the weight on the prior, which is due to the noise in the signal. The variance of the noise in
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Figure 4: Dynamic model, AR(1) example

the signal, 02, and the resulting Kalman gain, K, depend on the optimal level of attention, which
in turn depends on the parameters r, ¢1, 02, \.

Figure 4 shows a typical example in the AR(1) case. The impulse response of the action to an
innovation in the state is hump-shaped. The impulse response to noise follows an AR(1) process.
As in the static model, the action is dampened — its response to a change in the state is weaker
than under perfect information. In the dynamic model the action is also delayed — its strongest
response occurs later than with perfect information. Another feature of the dynamic model is that
mistakes are persistent (the impulse response of the error, x; — y;, to v follows an AR(1) process).
Stakes and prior uncertainty determine how much dampening there is, as in the static model, but
also the extent of the delay and the autocorrelation of the error. The insight that stakes and prior
uncertainty affect attention and thereby the persistence of mistakes has played a prominent role in
the literature on how people form expectations (see Section 4.2).

If the state follows an AR(p) process, the optimal signal is a one-dimensional signal on the state
vector (x¢,...,xt—py1) and typically the signal weights on all elements of the state vector are non-
zero (Mackowiak et al., 2018). This result illustrates some general features of rational inattention.
Agents focus on important variables—here state variables rather than higher lags of x;. Agents

engage in dimensionality reduction—-the optimal signal is one-dimensional even though the state
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vector in period t is p-dimensional. Surprisingly, information choice is also forward-looking. The
only payoff-relevant state in period t is x¢, but the optimal signal typically also has non-zero weights
on x_i,...,Ti—p+1 because those elements of the state vector help to predict future payoff-relevant
states.?3

Afrouzi & Yang (2020) relax the assumption in Mac¢kowiak & Wiederholt (2009) and Mac¢kowiak
et al. (2018) that agents receive a long sequence of signals after having chosen the information
strategy in period zero. The authors provide very fast code to compute the transitional dynamics
in conditional second moments and the limiting steady state.

In the example covered above, there are no state variables that are affected by the agent’s
own past choices (“endogenous state variables”). Section 5 of Sims (2003), Sims (2010), and Miao
et al. (2020) study dynamic RI problems with endogenous state variables, e.g., consumption-saving
problems. One of the recurring themes is that with high attention cost or low stakes the optimal
signal is a low-dimensional signal on the state vector with noise.

For a general non-quadratic setup, Steiner et al. (2017) show that the logit behavior also emerges

in the dynamic case.
U yea) A talyly'™")

t t—1\ __
f(yt|35 Y ) - fz eU(z’xt)/)\+a(z|yt71)dz’

(15)

where ¢ in the superscripts denotes the whole history until period ¢. The difference from the static
version is that the biases a(y;|y*~!) depend on how likely y; is conditional on the history of actions
taken until the current period. But again, each action history is associated with only one posterior
belief, which reduces dimensionality of the problem. The linear entropy-based cost of information
is also a benchmark case that abstracts from additional incentives to either smooth information
acquisition over time or to bunch it.

In sum,
1. RI generates delay in expectations and actions, but information choice is also forward-looking,
2. the optimal signal is typically a low-dimensional signal on the state vector, and

3. the logit behavior also emerges in the dynamic setting.

#Mackowiak et al. (2018) also study the case where the state follows an MA(q) process or an ARMA(p,q) process.
Jurado (2020) solves for the optimal signal weights in closed form in the AR(2), MA(1), and ARMA(1,1) case.
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2.6 Multi-dimensional model

To illustrate static RI with multi-dimensional state or action, we extend the example of Section
2.3.2.
Consider a manager who has to set a single price y. The target price is now a function of two

normally distributed random variables x; and xs:
2
Uly,z) = —r (alﬂfl + axxg — y) )

where a121 4 asz is the target price and the two-dimensional state x = (z1, xg)' has a multivariate
normal distribution with a diagonal variance-covariance matrix.

The model again takes the form of (1)-(3). If there is no restriction on the available signals, the
optimal signal has the form s = ajx1 4+ a2x2 4+ € with a Gaussian €. The target price a1x1 + asxs is
the only payoff-relevant aspect of the state. If we use a transformation of the state-space such that
T = a1x1 + asxo, then the problem takes the form of the one-dimensional example in Section 2.3.2

However, some authors have argued that in the multi-dimensional case, there may exist addi-
tional restrictions on the set of available signals. For example, in Mackowiak & Wiederholt (2009),
x1 are idiosyncratic conditions and xo are aggregate conditions, and it is assumed that the signal
s can be partitioned into one subvector s; that only contains information about idiosyncratic con-
ditions and another subvector ss that only contains information about aggregate conditions. That
is, paying attention to idiosyncratic conditions and paying attention to aggregate conditions are
independent activities. In this case, the optimal signals have the form s; = 1 +¢€; and so = x5+ €

where €1 and €y are mutually independent Gaussian noise terms. The action under RI is
y = Ela1z1 + agxa|s] = a1&1(x1 + €1) + axéa(z2 + €2),

with
A

A
—man(01- ) = man(0,1— ),
& maw( 2ralo2, b2 = maz 2ra3o2,

The agent is paying more attention to idiosyncratic conditions than to aggregate conditions, if
idiosyncratic conditions are more important or more volatile, a%agl > a%ai. Prices then respond
strongly to idiosyncratic shocks and weakly to aggregate shocks. Hence, the model generates micro
flexibility and aggregate stickiness of prices through the optimal allocation of attention. It turns

out that results are similar when firms can pay attention to variables such as quantity sold, wage

ECB Working Paper Series No 2570 / June 2021 32



bill, and total factor productivity, because none of these variables is the optimal linear combination
of idiosyncratic and aggregate conditions, and price setters choose to pay more attention to those

variables that are more driven by idiosyncratic conditions.

Finally, let us explore how the RI agent behaves if she has to set prices y1,y2 of two products

facing two random shocks 1, zo (see Készegi & Matéjka, 2020). Let the profit take a form:

Uly,z) = —<901 - y1)2 - (wz - y2)2 — by1y9, (16)

where the term —byjys summarizes interactions between the two products. If b > 0 then the
products are strategic substitutes, for b < 0 they are complements.

What is the optimal flexible information strategy here? Clearly, to set two prices the agent might
optimally want to get (at least) two signals. In this case, the transformation % = x1 + 29,2~ =
x1—1x9 converts the objective (16) to another with two quadratic terms as losses from misperceptions
of T and of 2™, but without an interaction term. The optimal price y; under perfect information
is

y1 = iz + fox ™.
The responsiveness to x~, |31], is greater than to ™+, |Bs|, if and only if the products are substi-
tutes.?

The transformation was chosen in such a way that the interaction term in the objective disap-
pears, and thus information acquisitions about = and 2™ are independent. The two-dimensional
problem thus simplifies to two independent uni-dimensional choices (information on =z~ to deter-
mine the difference y; — y2, and information on ™ to determine y; + y2). From now on, we can

use the same techniques as in the one-dimensional Example 2.3.2. Under RI, we thus get:

Elyi|x1, 2] = B1&(Br)x~ + B2&(B2)z™,

where £(3;) are attention weights that are given by the formula (14) as in the one-dimensional case.
Figure 5 shows a contour plot of utility when x1, x2 are misperceived. It shows that for b > 0 the
steepest descent of losses is in the direction of (—1,1), i.e., along a varying x~, which is thus the

most important component to pay attention to.

2B =1/(2+0b) and B2 = 1/(b— 2).
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Figure 5: Utility losses from misperceptions of (z1,z2) for b > 0.

Relative elasticities to different types of shocks, = vs xt, are again magnified, feature (F5)
of the static problem. If the cost of information is sufficiently high, then for b > 0 agent chooses
to get information on x~ only - both prices y; and yo are then perfectly negatively correlated as
both respond to = only. The RI agent does not always pay attention to all dimensions of the
state-space, but chooses only the most important ones. The magnification thus takes a form of
(F10): simplification and indexation. The index is determined by the optimal strategy of attention.

We can always decompose a multi-dimensional problem into simpler independent choices, even
in more complicated choice settings than this illustrative one. To do this we can use a method
similar to principal component analysis that is called “reversed water-filling”.?®> The components of
uncertainty about x would correspond to the axes of ellipses given by quadratic losses as in Figure 5,

and the RI agent would choose how much attention to pay to each component. However, the chosen

components would be endogenous transformations of the underlying shocks, e.g., = = 1 — x2.

3 Applications of the theory of RI by field

This section reviews the rapidly growing set of applications of RI in several fields, from macroeco-
nomics to political economy. Section 4 focuses on the empirical evidence and Section 5 on policy

implications.

25GSee Készegi & Matéjka (2020) for the application to RI
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3.1 Macroeconomics

When Sims (1998) proposed the idea of rational inattention, his motivation was macroeconomics.
Sims considered a conventional dynamic stochastic general equilibrium (DSGE) model with various
forms of slow adjustment of nominal and real variables. He concluded that multiple sources of slow
adjustment were necessary for the model to match the inertia in macroeconomic data.?® Sims
conjectured that the inertia in the data could instead be understood as the result of a single new
source of slow adjustment, rational inattention. Sims’s hypothesis has defined a research agenda.

Much of the subsequent work focuses on how firms set prices, a key question in macroeconomics.
This research is motivated by both microeconomic data on prices and the behavior of the aggregate
price level that Sims (1998) emphasized, e.g., the fact that at the micro level prices change frequently
and by large amounts while the aggregate price level responds slowly to shocks (Mackowiak &
Wiederholt, 2009), the fact that price distributions are discrete and prices tend to fluctuate between
a regular price and a sales price (Matéjka, 2016), and the fact that pricing policies appear to be
coarse and updated infrequently (Stevens, 2020).

This literature begins with Woodford (2003). He assumes that price setters observe nominal
aggregate demand with idiosyncratic noise, interprets the noise as resulting from limited attention,
and shows that nominal shocks have strong and persistent real effects. The idea is that macroeco-
nomic data is publicly available with little delay, but most agents presumably have little incentive
to track it carefully; as a result, prices respond slowly to nominal shocks (interest rate shocks or
money supply shocks) and nominal shocks have real effects.

Mackowiak & Wiederholt (2009) study price setting under rational inattention, subject to the
constraint that paying attention to aggregate conditions and paying attention to idiosyncratic
conditions are separate activities.?” To match the large average absolute size of price changes in
the micro data, idiosyncratic volatility in the model has to be an order of magnitude larger than
aggregate volatility. Firms then allocate almost all attention to idiosyncratic conditions.?® Hence,

prices react strongly and quickly to idiosyncratic shocks, but only weakly and slowly to aggregate

20Later, Christiano et al. (2005), Smets & Wouters (2007), and many others have confirmed Sims’s finding in more

formal analysis.
2TThis constraint is relaxed later in that paper.
28In addition, feedback effects arise: An individual firm finds it optimal to allocate little attention to the aggregate

economy in part because other firms do the same.
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shocks. Thus, the aggregate price level responds slowly to shocks. The model can match the
empirical finding that at the micro level prices change frequently and by large amounts but the
aggregate price level responds slowly to shocks.?? This paper exploits (F4)-(F6).

Matéjka (2016) studies price setting under rational inattention without approximating the profit
function.?® As a result, firms find it desirable to choose prices from a finite set — even though
shocks are distributed continuously. Discrete price adjustment is optimal despite the absence of
any physical cost of price adjustment. In addition, prices endogenously fluctuate between two levels
— a regular price and a sales price.3! This paper exploits (F7).

Stevens (2020) presents evidence that firms use coarse pricing policies that are updated infre-
quently and consist of a small menu of prices. She builds a model that can endogenously generate
such pricing policies. In her model there is a fixed cost of reviewing a pricing policy and the choice
of a price within a pricing policy is made under RI.3? This paper also exploits (F7).

Other recent papers on price setting under rational inattention include Pasten & Schoenle
(2016), Afrouzi (2016), Afrouzi & Yang (2020), and Turén (2020). For example, Afrouzi & Yang
(2020) argue that rational inattention can explain the flattening of the Phillips curve in recent
decades.

Several papers argue that RI can help understand consumption data. Luo (2008) studies a
permanent income model with quadratic utility. He assumes that agents observe permanent income
with i.i.d. noise. One can show that this signal is optimal under RI, because permanent income
is the only state variable. His closed-form solution helps understand how RI affects the impulse
responses of consumption to income shocks. He shows that RI can be a potential explanation for

two empirical puzzles: the excess smoothness puzzle and the excess sensitivity puzzle.?® Sims (2006)

2In a representative study, Klenow & Kryvtsov (2008) report that half of all non-housing consumer prices collected
by the Bureau of Labor Statistics in order to calculate the consumer price index last less than 3.7 months and,
conditional on the occurrence of a price change, the average absolute size of the price change is about 10 percent.

See also Bils & Klenow (2004) and Nakamura & Steinsson (2008).
30For tractability, Maékowiak & Wiederholt (2009) work with a quadratic approximation to the firms’ profit

function. With Gaussian shocks, the distribution of prices under rational inattention is then also Gaussian.
31In complementary work, Matéjka (2015) demonstrates that a perfectly informed firm moves prices discretely if

it faces a consumer who is subject to rational inattention.
32Her model builds on Woodford (2009).
33Luo (2008) also compares RI to habit formation and to signal extraction with exogenous variance of noise.

Subsequent work explores interactions of RI with robustness and recursive preferences, see Luo et al. (2012), Luo &
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and Tutino (2013) analyze consumption-saving choices under RI with non-quadratic utility. The
main prediction of the latter model is that consumption responses to wealth shocks are asymmetric,
with negative shocks producing faster and stronger reaction than positive shocks.

Another set of questions in macroeconomics is: What is the source of the business cycle? How
do business cycle shocks propagate? How can policy affect the propagation of shocks?

Mackowiak & Wiederholt (2015) return to the original conjecture of Sims (1998) that the inertia
in aggregate data could be understood as the result of a single source of slow adjustment — rational
inattention. The model is close to a New Keynesian model, except that it discards all sources
of slow adjustment that usually are in New Keynesian models (Calvo pricing, habit formation in
consumption, Calvo wage setting), instead featuring rational inattention on the side of firms and
households as the only source of slow adjustment. Firms set prices subject to rational inattention.
Households make consumption decisions subject to rational inattention. In equilibrium, households
pay little attention to the real interest rate, because fluctuations in the real interest rate are modest
and small deviations from the consumption Euler equation are inexpensive in utility terms. The
model matches the impulse responses to a monetary policy shock and to a technology shock from a
standard vector autoregression, confirming Sims’s (1998) conjecture. This paper exploits (F4)-(F6).

Mackowiak & Wiederholt (2020) study a Real Business Cycle (RBC) model with rational inat-
tention. The introduction of rational inattention on the firm side addresses two weaknesses of the
baseline RBC model: It raises the persistence of employment, investment and output growth and
it creates co-movement after news shocks.

Insights about policy emerge (Paciello & Wiederholt, 2014). Attention to some shocks is good.
Attention to other shocks is bad. Policy can affect the incentives to pay attention to shocks. In a
standard business cycle model, quick price responses to productivity shocks are good, while quick
price responses to markup shocks are bad. The central bank can affect price setters’ incentives to
pay attention to shocks through its interest rate policy. This is an implication of (F5)-(F6). At the
optimal policy, the central bank discourages firms from paying attention to markup shocks.

Ilut & Valchev (2020) study a general equilibrium incomplete markets model in which agents
use costly reasoning effort to update their perception of the optimal policy function. The model

has empirically desirable properties: the marginal propensity to consume is higher, hand-to-mouth

Young (2016) and Luo et al. (2017).
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status is more frequent and persistent, and there is more wealth inequality than in the standard
model. Other work on business cycles under RI includes Zorn (2020), who studies investment under
RI, Ellison & Macaulay (2019), who explain how RI can lead to unemployment traps, and Kamdar
(2019), who argues that RI can rationalize the co-movement of expectations of real activity and
expectations of inflation in survey data.

RI can be tested using survey data on expectations. RI passes this test, while the full information
rational expectations (FIRE) model fails. Coibion and Gorodnichenko (2012, 2015) document that
in the data expectations deviate systematically from full information rational expectations. The
average forecast across agents of various macroeconomic variables underreacts to shocks to the
economy. If a shock raises inflation for some time, the average inflation forecast of agents increases
by less than actual future inflation. Relatedly, the ex-post average forecast error is predictable with
the ex-ante average forecast revision. If inflation is rising and forecasts are being revised up, the
subsequent average forecast error tends to be positive. Rational inattention implies exactly the
systematic deviations from full information rational expectations found in the data.

Several conceptual issues arise when rational inattention is applied to macroeconomics. Each
paper mentioned in this subsection confronts at least some of these issues. Macroeconomic models
are dynamic, agents interact, and agents tend to take multiple actions in a world with various
shocks. In equilibrium, the optimal attention allocation of one agent depends on the attention

allocation of other agents.

3.2 Finance

The theory of RI has been used to address core questions in finance: How come most investors
hold so much of their wealth in domestic assets? What explains the lack of diversification more
generally? If the answer is information, what explains the lack of information flows? What are
possible channels of contagion? Do mutual fund managers provide valuable services for their clients?

In today’s globalized financial markets, investors can choose among a wide array of assets and
a large amount of information relevant for a portfolio decision arrives continuously. RI makes the
plausible assumption that investors cannot keep track of all information necessary for an optimal
portfolio choice. Rationally inattentive investors develop strategies for processing information that

leave them systematically oblivious to some data. New predictions for portfolios and asset prices
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arise that offer answers to the aforementioned questions.

Van Nieu