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Abstract
This paper studies the joint dynamics of U.S. inflation and the average inflation predictions of
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forecast updating and a SW-UC model with time-varying inflation gap persistence. The joint
DGP produces estimates that indicate the inflation spike of 1974 was dominated by gap infla-
tion, but trend inflation explains most of the inflation peak of the early 1980s. We also find the
stochastic volatility (SV) of trend inflation exhibits negative comovement with the time-varying
frequency of SI forecast updating while the SV and time-varying persistence of gap inflation
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JEL Classification Numbers : E31, C11, C32.

Key Words : inflation; professional forecasters; sticky information; particle filter; Bayesian esti-
mation; Markov chain Monte Carlo; stochastic volatility; time-varying persistence.

†e-mail : elmar.mertens@frb.gov, voice: (202) 452–2916, address : Monetary Affairs Division,
Board of Governors of the Federal Reserve System, 20th St. and Constitution Ave., N.W., Wash-
ington, D.C. 20551.
‡e-mail : jmnason@ncsu.edu, voice: (919) 513–2884, address : Department of Economics, Cam-
pus Box 8110, North Carolina State University, Raleigh, NC 27695–8110 and the Centre for
Applied Macroeconomic Analysis.

∗We thank Gregor Smith for several conversations that motivated this paper, Todd Clark and Monica
Jain for useful comments, and participants at the 25th (EC)2 Conference, Advances in Forecasting, held
at the Universitat Pompeu Fabra, Barcelona, Spain, December 12 and 13, 2014 and the CIREQ Time
Series and Financial Econometrics Conference, held at the Université de Montréal, Montréal, Québec,
May 8 and 9, 2015. The views herein are those of the authors and do not represent the views of the
Board of Governors of the Federal Reserve System or the Federal Reserve System. Updates to this paper
will be posted at www.elmarmertens.com/research/workingpapers/MertensNasonSI.pdf.

www.elmarmertens.com/research/workingpapers/MertensNasonSI.pdf


1 Introduction

Central banks pay extraordinary attention to inflation expectations. A good reason for this preoccupa-

tion is that inflation expectations contain information about whether a central bank will be successful

in stabilizing inflation. This information can be difficult for monetary policy makers to obtain because

inflation expectations are not directly observed. Economists have responded by advancing methods

to infer inflation expectations from realized inflation and some combination of financial market data,

statistical and economic models, and inflation survey data.

This paper contributes to the literature studying the joint dynamics of realized inflation and the

inflation predictions of professional forecasters. We tap a quarterly sample of inflation predictions of

the Survey of Professional Forecasters (SPF) to extract the beliefs of its average respondent about the

(in)stability, of the persistence, volatility, and stickiness of inflation. The SPF is an attractive source

of information for studying the joint dynamics of realized and predicted inflation because, as Faust

and Wright (2013) and Ang, Bekaert, and Wei (2007) observe, SPF inflation predictions often dominate

model based out of sample forecasts. This superior forecasting performance suggests the average SPF

participant’s beliefs harbor information useful for assessing the joint data generating process (DGP) of

realized and anticipated inflation.

The joint dynamics of realized inflation and average SPF inflation predictions combine two non-

linear models. These are the Stock and Watson (2007) unobserved components (UC) model of inflation

and a nonlinear version of the Mankiw and Reis (2002) sticky information (SI) model. Mankiw and Reis

(MR) propose a SI model in which price setting firms face incentives to update their information set

infrequently rather than at every date as rational expectations (RE) maintains. A subset of firms are

restricted to ground current decisions on past information because MR assume that at any moment of

time only a time-invariant fraction of firms are granted access to current information.1

Coibion and Gorodnichenko (2015) adapt the MR-SI model to produce the h-step ahead inflation

prediction of a SI forecaster, Ftπt+h. This prediction is generated by Coibion and Gorodnichenko (CG)

as a weighted average of the previous period’s SI forecast, Ft−1πt+h, and a RE inflation forecast, Etπt+h,

Ftπt+h = λFt−1πt+h + (1 − λ)Etπt+h, where λ is the constant SI parameter, λ ∈ (0, 1). This scheme,

which updates from Ft−1πt+h to Ftπt+h, is a fixed coefficient-linear SI forecasting law of motion.

We innovate on the CG fixed coefficient-linear SI law of motion by investing the frequency at which

1In contrast, Sims (2003) constructs a dynamic optimizing model built on a primitive form of information pro-
cessing in which agents react to shifts in the true DGP of the economy by smoothing their forecasts.
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Ftπt+h is updated with a time-varying parameter (TVP), λt . The result is the nonlinear law of motion

Ftπt+h = λt−1Ft−1πt+h +
(
1− λt−1

)
Etπt+h, (1)

where the SI-TVP frequency of updating is an exogenous random walk, λt = λt−1 + σκκt , κt ∼ N(0, 1),

and λt ∈ (0, 1) for all dates t. The SI forecaster’s information set includes λt−1 when Ft−1πt+h is

updated to Ftπt+h while κt is realized only during date t.

A motivation for including λt−1 in the SI law of motion (1) is to uncover the changing beliefs the

average SPF participant holds about the dynamics of realized inflation, πt . Changes in these beliefs

are embedded in movements of the average SPF participant’s h-step ahead inflation prediction, πSPFt,t+h.

We connect the observed πSPFt,t+h to the latent SI forecast Ftπt+h by assuming πSPFt,t+h = Ftπt+h + ζt,t+h,

where the measurement error ζt,t+h ∼ N
(
0, σ 2

ζ,h
)
. This πSPFt,t+h-measurement error equation and the SI

law of motion (1) form the mechanism by which shocks to the DGP of πt are transmitted to πSPFt,t+h. This

DGP produces Etπt+h, which the SI law of motion (1) needs to update Ftπt+h.

The true DGP of πt is approximated with the Stock and Watson (2007) UC model. The Stock and

Watson (SW-)UC model decomposes πt into trend, τt , and gap, εt , inflation, which sets πt = τt + εt .

Nonlinearities often appear in the SW-UC model as stochastic volatility (SV) in the innovation, ηt , to the

random walk of τt and in εt . SV is induced by letting the variances of ηt and εt follow independent log

random walks; see Stock and Watson (2010), Creal (2012), Mertens (2015), and Shephard (2013) among

others. An implication is εt lacks own persistence. We extend the SW-UC model by endowing εt with

a k-th order autoregresssion, AR(k) while maintaining its innovation, υt , is afflicted with SV. We report

estimates when the AR parameters of εt are fixed or evolve as random walks.2

We estimate the joint DGP of the extended SW-UC model, the SI law of motion (1), and the SPF

measurement error equation. Under this joint DGP, persistence in εt produces a term structure inπSPFt+h ,

h = 1, . . . , H, in which changes in λt−1 create nonlinear state dynamics and volatility.3 Estimates of

this DGP shed light on whether movements in λt−1 lead, lag, or are coincident to changes in the SV of

τt , the SV of εt , or time-varying persistence in εt . If λt−1 exhibits meaningful statistical and economic

variation and this time variation moves with the state dynamics of the SW-UC model, we have evidence

shifts in average SPF inflation predictions are attuned to the underlying factors driving inflation.

2Cogley, Primiceri, and Sargent (2010) reports estimates of time-varying inflation persistence using a TVP-VAR
with SV that contains the U.S. unemployment rate, a short term nominal interest rate, and inflation.

3This approach to studying the joint dynamics of πt and πSPFt,t+h builds on Nason and Smith (2014). They estimate

the joint dynamics of πt and πSPFt,t+h by integrating the SI-SPF regressions of Coibion and Gorodnichenko (2015)
with the inflation survey term structure models of Kozicki and Tinsley (2012) and Mertens (2015).

2



Obtaining this evidence rests on separating the impact of changes in λt−1 from the SVs of τt and

εt , and time-varying persistence in εt on the joint dynamics of πt and πSPFt,t+h. We locate information

identifying these TVPs in the approximate exponentially weighted moving average (EWMA) recursions

implied by the SW-UC model and the SI law of motion (1). The SW-UC model generates an approximation

to a fixed coefficient EWMA recursion for Etπt+1 because the discount on the history of πt is a function

of the SVs of τt and εt . Similarly, the SI law of motion (1) yields an approximate EWMA recursion

for Ftπt+h in which the discount rate on the history of Etπt+h depends on the history of λt−1. Since

shocks to these discount rates differ, fluctuations in Etπt+h and Ftπt+h have disparate sources. We

rely on these differences to identify the mechanisms that transmit shocks to stickiness, volatility, and

persistence into πt and Ftπt+h by the joint DGP of the SW-UC model and the SI law of motion (1).

Another contribution of this paper is its estimator of the joint DGP of the SW-UC model, SI law of

motion (1), the random walk of λt , and the SPF measurement error equation. Rao-Blackwellizing this

nonlinear joint DGP creates a linear state space system on which the Kalman filter is used to generate the

latent states τt and εt conditional on realizations λt , the SVs of τt and εt , and time-varying persistence

of εt . We generate and evaluate the role of these realizations in this Kalman filter using sequential

Monte Carlo (SMC) simulation methods (i.e., the particle filter) that are reviewed by Creal (2012).

The conditionally linear likelihood of the SW-UC model, the SI law of motion (1), and the SPF

measurement error equation are estimated on a sample that runs from 1968Q 4 to 2014Q 2. The sample

equates πt and πSPFt,t+h with GNP or GDP deflator inflation and the average SPF predictions of this growth

rate from h = 1- to 5-step ahead horizons, respectively.4 The estimates show (i) the data prefer a joint

DGP in which εt is driven by a TVP-AR(1), (ii) εt explains two-thirds or more of the spike in πt of

the 1973–1975 recession, but τt dominates the peak in πt of the early 1980s, and (iii) πSPFt,t+h is more

sensitive to the impact of permanent shocks to the conditional mean of inflation.

The structure of the paper follows. The next section builds the nonlinear state space system of

the SI law of motion (1) and the SW-UC model with SV and a persistent inflation gap. We also construct

an example in this section of a state space model with a fixed coefficient-AR(k) inflation gap to motivate

estimation of the joint DGP ofπt andπSPFt,t+h. Section 3 discusses estimation of the nonlinear state space

system. Results appear in section 4. Section 5 concludes.

4The SPF contains average predictions of GNP or GDP inflation for a nowcast and forecasts up to four quarters
ahead. However, these surveys are collected at the middle of every quarter. Since none of these predictions are
based on full knowledge of current quarter inflation, we treat each survey as being conditioned only on data
available through the end of the previous quarter. This identifies the average SPF nowcast, 1-step, . . . , 4-step
predictions withπSPFt,t+h, h= 1, 2, . . . , 5, which implies these forecasts are made at the end of the previous quarter.
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2 Statistical and Econometric Models

This section describes the statistical and economic models used to estimate the joint DGP of πt and

πSPFt,t+h, h = 1, . . . , H. The statistical model is the SW-UC model that has SV in innovations to trend and

gap inflation, τt and εt , and generates persistence in εt with a TVP-AR(k). The economic model is the

nonlinear SI law of motion (1) of Ftπt+h. When combined, these models form a nonlinear state space

model. We also discuss the joint DGP of πt and πSPFt,t+h when persistence in εt is a fixed coefficient AR(1).

This example shows λt−1 affects the transition dynamics and volatility of the unobserved state driving

πSPFt,t+h independent of whether persistence in εt is time-varying. In this case, changes in λt−1 and the

SV of innovations to τt and εt produce movements in πSPFt,t+h. When a TVP-AR(k) generates persistence

in εt , it and λt−1 interact to create additional movements in the transition dynamics of the state. This

adds shocks to the persistence of εt to the list of factors that can induce fluctuations in πSPFt,t+h.

2.1 The SW-UC Model

The true DGP of πt is approximated with the SW-UC model. Versions of this model are estimated

by Stock and Watson (2010), Grassi and Prioietti (2010), Creal (2012), Mertens (2015), and Shephard

(2013). These authors include nonlinearities in the SW-UC model by embedding SV in the innovations

of τt , and εt . This paper includes an additional nonlinearity in the SW-UC model, which is time-varying

persistence in the εt created by a TVP-AR(k).

These features of our specification of the SW-UC model are collected into its state space system

πt = τt + εt , (2.1)

τt+1 = τt + ςη,tηt+1, ηt+1 ∼ N (0, 1) , (2.2)

εt+1 =
k−1∑
j=0

θj,tεt−j + ςυ,tυt+1, υt+1 ∼ N (0, 1) , (2.3)

lnς2
`,t+1 = lnς2

`,t + σ`ξ`,t+1, ξ`,t+1 ∼ N (0, 1) , ` = η, υ, (2.4)

θj,t+1 = θj,t + σφ,jφj,t+1, φj,t+1 ∼ N (0, 1) , j = 1, . . . , k, (2.5)

where the innovations to τt and εt , ηt and υt , are afflicted by SV in the form of independent log random

walks ςη,t and ςυ,t , the TVP-AR(k) is also generated by the independent random walks θ1,t , . . . , θk,t ,

and the eigenvalues of the lag polynomial of these TVPs are outside the unit circle at every date t. The

state space system of our modified SW-UC model consists of (2.1), which is the observation equation

that decomposes πt into τt and εt and the system of state equations, (2.2)–(2.5).
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A special case of our SW-UC model gives a result traced to Muth (1960). Let θ1,t = . . . = θk,t = 0,

ση = ςη,t , and συ = ςυ,t for all t. The result is a fixed coefficient UC model that has an IMA(1,1) reduced

form,
(
1−L

)
πt =

(
1−$L

)
νt , where L is the lag operator and the one-step ahead forecast error is νt =

ηt + εt + τt − τt−1|t−1.5 The IMA(1, 1) implies the RE inflation updating equation, Etπt+1 =$Et−1πt +(
1−$

)
πt , subsequent to some algebra. Shephard (2013) argues for replacing the fixed MA1 coefficient

in the Etπt+1 updating equation with the TVP$t , Etπt+1 =$tEt−1πt +
(
1−$t

)
πt because of ςη,t and

ςυ,t .6 Backward iteration of the RE updating equation produces the approximate RE-EWMA recursion

Etπt+1 =
∞∑
j=0

µ$,t−j

 j∏
`=0

$t−`

πt−j , (3)

where µ$,t =
(
1−$t

)/
$t . Thus, the SW-UC model with SV is consistent with an approximate RE-EWMA

recursion (3) built from an updating equation that resembles the SI law of motion (1) of Ftπt+h.

2.2 Average SPF, SI, RE Inflation Forecasts and λt

This section begins by reproducing the SPF measurement error equation, the nonlinear SI law of motion

(1), and the random walk law of motion of λt . These elements form the system of equations

πSPFt,t+h = Ftπt+h + ζt,t+h, (4.1)

Ftπt+h = λt−1Ft−1πt+h +
(
1− λt−1

)
Etπt+h, (4.2)

λt = λt−1 + σκκt , (4.3)

where h = 1, . . . , H, ζt,t+h ∼ N(0, σ 2
ζ,h), λt ∈ (0, 1) for all dates t, and κt ∼ N

(
0, 1

)
. The system of

equations (4.1)–(4.3) defines the mechanism through which shocks to λt−1 and movements in SI and

RE inflation forecasts generate fluctuations in πSPFt,t+h.

In part, this mechanism rests on the SI law of motion (4.2) approximating an EWMA recursion for

Ftπt+h. Subsequent to repeated backward iteration of and substitution into (4.2), the recursion is

Ftπt+h =
∞∑
j=0

µλ,t−1−j

 j∏
`=0

λt−1−`

Et−jπt+h, (5)

where µλ,t−1−j =
(
1−λt−1−j

)/
λt−1−j . The SI-EWMA recursion (5) bounds Ftπt+h between the RE inflation

5An estimator of$ is built using the autocovariance functions (ACFs) of the IMA(1,1) and fixed coefficient SW-UC
model; see Grassi and Proietti (2010) and Shephard (2013). At lags zero and one, the ACFs set

(
1+$2

)
σ 2
ν = σ 2

η

+ 2σ 2
ε and −$σ 2

ν = −σ 2
ε . Substitute for σ 2

ν to obtain the quadratic equation $2 − $
(
σ 2
η + 2σ 2

ε

) /
σ 2
ε + 1 = 0.

Its solution is $ =
[
1+ 0.5σ 2

η
/
σ 2
ε

]
−
(
ση
/
σε
)√

1+ 0.25σ 2
η
/
σ 2
ε , given $ ∈ (−1,1) and ση, σε > 0.

6Allowing for the TVP-AR(k) of εt creates higher order serial correlation in the reduced form of the SW-UC model.
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forecast, limλt−1−→0 Ftπt+h = Etπt+h, and limλt−1−→1 Ftπt+h =
∑∞
j=1 µλ,t−1−j

(∏j
`=1 λt−1−`

)
Et−jπt+h. The

former limit shows SI shutting down, as λt falls to zero because the history of RE inflation forecasts,

Et−jπt+h, j ≥ 1, is discounted at a greater rate. Thus, the SI inflation forecast is updated to Etπt+h

period by period. At the other extreme, less weight is placed on Etπt+h as λt−1 rises to one. The

SI forecaster neglects current information and instead engages the history of Et−jπt+h, j ≥ 1. Since

Ft−1πt+h summarizes this history, only this information is used by the SI forecaster to set Ftπt+h.7

Between these polar cases, movements in λt−1 produce fluctuations in the rate at which the history

of Etπt+h is discounted in the approximate SI-EWMA formula (5). These fluctuations offer identifying

information to study the joint dynamics of πt and πSPFt,t+h. The identifying information also relies on

the sources of movements in the discount rate $t of the approximate RE-EWMA (3) grounded in the

SV of the SW-UC model. Since shocks to ςη,t and ςυ,t generate movements in the discount rate of the

RE-EWMA (3) and is a potential source of variation in πSPFt,t+h that is independent of shocks to λt−1, there

are several sources of identifying information in the mechanism that transmits shocks into the term

structure of πSPFt,t+h. The next two sections map the joint DGP of the SW-UC model (2.1)–(2.5) and the

SI prediction mechanism of the average SPF respondent (4.1)–(4.3) into nonlinear state space systems

which can be estimated on the sample
{
πt , πSPFt,t+h

}T
t=1

, h = 1, . . . , H.

2.3 An Example: The SW-UC-SI Model with a Fixed Coefficient AR(1) Inflation Gap

This section presents an example that explains and motivates our approach to evaluating the joint

dynamics of πt and πSPFt,t+h. The example turns the TVP-AR(k) of (2.3) into a fixed coefficient AR(1) by

setting k = 1 and θ1 = θ1,t . Otherwise, the example leaves the rest of the SW-UC model untouched.

Our motivation is to explain the impact of λt on the joint DGP of the SW-UC model (2.1)–(2.5) and

the SI prediction mechanism of the average SPF respondent (4.1)–(4.3) separate from the additional

complication of estimating a SW-UC model that includes a TVP-AR(k) inflation gap.

The state space system of the SW-UC model consists of the observation equation

πt = δx xt , (6.1)

which is equation (2.1), where δx =
[
1 1

]
and xt = [τt εt]′. Since the state vector xt consists of the

random walk (2.2) of trend inflation and the fixed coefficient AR(1) of gap inflation, εt+1 = θ1εt + υt+1,

7Lag the EWMA smoothing formula (5) by one period to obtain Ft−1πt+h =
∑∞
j=0 µλ,t−2−j

(∏j
`=0 λt−2−`

)
Et−1−jπt+h.

Changing the indexes to i=j+1 andn=`+1 yields Ft−1πt+h =
∑∞
i=1 µλ,t−1−i

(∏i
n=1 λt−1−n

)
Et−iπt+h, given λt−1=1.
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the system of conditionally linear state equations evolves according to

xt+1 = ΘΘΘ1xt + ΞΞΞtwt+1, (6.2)

where ΘΘΘ1 =

 1 0

0 θ1

, ΞΞΞt =
 ςη,t 0

0 ςυ,t

, and wt+1 =
[
ηt+1 υt+1

]′
. The system of state equations

(6.2) is linear conditional on the log random walk process (2.4) that generates ς2
η,t and ς2

υ,t . The SV

shocks ς2
η,t and ς2

υ,t are the source of nonlinearity in the SW-UC model when persistence in εt is tied

to a constant AR1 coefficient, θ1. This nonlinearity creates SV in the transition dynamics of system of

state equations (6.2) because it appears in the covariance matrix of the system of state equations (6.2),

Et
{ΞΞΞtwt+1w′t+1ΞΞΞ′t} = ΞΞΞtΞΞΞ′t =

 ς2
η,t 0

0 ς2
υ,t

.

Given a constant θ1, the law of iterated expectations (LIE) is available to compute h-step ahead

RE inflation forecasts using the state space system (6.1) and (6.2) of the SW-UC model. This state space

system gives the h-step ahead RE inflation forecast Etπt+h = δxΘΘΘh1 xt . Given h = 1, . . . , H, these RE

predictions form a term structure of inflation predictions because a AR(1) generates persistence in εt .

Next, substitute the RE inflation forecast term structure into the SI approximate EWMA (5) to find Ftπt+h

= δxΘΘΘh1 ∑∞j=0 µλ,t−1−jΘΘΘj1 (∏j
`=0 λt−1−`

)
xt−j . We show the infinite sum of the previous expression equals

the SI forecast of xt , which is the SI inflation term structure forecast

Ftπt+h = δxΘΘΘh1Ftxt , h = 1, . . . ,H, (7)

which connects the h-step ahead SI inflation forecast to the SI nowcast of xt .

We swap the h-step ahead state vector, xt+h, for Ftπt+h in the SI law of motion (4.2), Ftxt+h =(
1 − λt−1

)
Etxt+h + λt−1Ft−1xt+h. The process of backward iteration yields the smoothing formula

Ftxt+h = ΘΘΘh1 ∑∞j=0 µλ,t−1−jΘΘΘj1 (∏j
`=0 λt−1−`

)
xt−j , where Et−jxt+h = ΘΘΘh+j1 xt−j . Let h = 0 to obtain Ftxt

=
∑∞
j=0 µλ,t−1−jΘΘΘj1 (∏j

`=0 λt−1−`
)

xt−j , which links Ftπt+h to Ftxt . After pulling xt from the previous

infinite sum, we have Ftxt =
(
1 − λt−1

)
xt +

∑∞
j=1 µλ,t−1−jΘΘΘj1 (∏j

`=0 λt−1−`
)

xt−j , which by a change in

index yields

Ftxt =
(
1− λt−1

)
xt + λt−1ΘΘΘ1

∞∑
i=0

µλ,t−1−iΘΘΘi1
i+1∏
`=1

λt−1−`

 xt−1−i

=
(
1− λt−1

)
xt + λt−1ΘΘΘ1Ft−1xt−1, (8)

where Ft−1xt−1 =
∑∞
j=0 µλ,t−1−jΘΘΘj1 (∏j

`=0 λt−1−`
)

xt−1−j . The system of equations (8) is a recursion that

7



generates the SI forecast of xt , Ftxt , given its own lag and conditions on the law of motion (6.2) of xt+1,

the independent log random walks of ςη,t+1 and ςυ,t+1, and the random walk of λt .

We lead the recursion (8) by one period to generate SI forecasts of trend and gap inflation and

substitute for xt+1 using the SW-UC model’s state system (6.2). These actions produce the SI system of

state equations xt+1

Ft+1xt+1

 =
 ΘΘΘ1 02×2(

1− λt
)ΘΘΘ1xt λtΘΘΘ1


 xt

Ftxt

 +
 ΞΞΞt(

1− λt
)ΞΞΞt

wt+1, (9.1)

which is conditionally linear on the independent bivariate SV log random walk process (16) and the

random walk of λt , which is equation (4.3). Note that ςη,t , ςυ,t , and λt are known when xt and Ftxt are

updated to xt+1 and Ft+1xt+1, respectively. The associated system of observation equations is

Yt ≡



πt

πSPFt,t+1

...

πSPFt,t+H


=



δx 01×4

01×4 δxΘΘΘ1

...
...

01×4 δxΘΘΘH
1


 xt

Ftxt

 +


0

ζt,t+1

...

ζt,t+H


, (9.2)

which draws on the observation equation (6.1) of the SW-UC model, the SPF measurement equation

(4.1), and the system (7) that sets Ftπt+h equal to a term structure of h-step ahead SI forecasts of xt .8

Thus, the nonlinear state space system (9.1) and (9.2) eliminates Ftπt+h from the joint dynamics of πt

and πSPFt,t+h, h = 1, . . . , H.9

The time-varying frequency of updates to the SI inflation forecast alters the path of Ft+1xt+1 in

two ways. First, shocks to λt shift the transition dynamics of the state equations (9.1). These changes

create permanent movements in the persistence of Ft+1xt+1. The volatility of Ft+1xt+1 is also affected

by permanent shocks to λt . Thus, the fixed coefficient AR(1)-SW-UC model united with the nonlinear

SI model (4.1)–(4.3) creates the opportunity for changes in the stickiness of Ftπt,t+h to interact with

shifts in the volatility of the DGP of πt to explain fluctuations in the term structure of πSPFt+h . The next

section replaces the fixed coefficient inflation gap with the TVP-AR(k) of (2.3). We add this nonlinearity

to the joint DGP of the SW-UC model and SI law of motion to ask whether the term structure of πSPFt+h

responds to time-varying persistence in the inflation gap at any time during the last 45 years.

8Since ζt,t+h is an additive measurement error, it only effects the observation equations and not state dynamics.
9The state space model (9.1) and (9.2) is identified by separating time variation in Etπt+h using ςη,t and ςυ,t while
λt is responsible for these movements in Ftπt,t+h. Alternatives to our identification are developed by Krane
(2011), Coibion and Gorodnichenko (2012), and Jain (2013). Forecast revisions are central to their identification
of the responses of professional forecasters to persistent shocks.
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2.4 The State Space System with a TVP-AR(k) Inflation Gap

An inflation gap driven by the TVP-AR(k) of (2.3) complicates construction of the state space of the

joint dynamics of πt and πSPFt+h . In this case, the LIE cannot be engaged to calculate h-step RE inflation

forecasts using the SW-UC model (2.1)–(2.5). We develop this idea starting with the observation equation

of the state space system of the SW-UC model

πt = δXXt , (10.1)

which is equation (2.1), where the 3+2k row vector δX =
[
1 1 0 . . . 0

]
is conformable with the state

vector Xt = [τt εt εt−1 . . . εt−k+1]′, which contains trend inflation, gap inflation, and its lags. The

associated conditionally linear system of state equations

Xt+1 = ΘΘΘtXt + ΥΥΥtWt+1, (10.2)

is the rest of the SW-UC state space, where ΘΘΘt =


1 0 0 . . . 0 0

0 θ1,t θ2,t . . . θk−1,t θk,t

0k−1×1 Ik−1 0k−1×1

, the

vector DΞΞΞ = [ςη,t ςυ,t 0 . . . 0
]

contains the only nonzero elements of the diagonal matrix ΥΥΥt and

Wt+1 =
[
ηt+1 υt+1 0 . . . 0

]′
. Thus, Et

{ΥΥΥtWt+1W
′
t+1ΥΥΥ ′t} is a diagonal matrix with its nonzero elements

residing in the vector DW,t =
[
ς2
η,t ς

2
η,t 0 . . . 0

]
. The first two elements of DW,t represent the SV in

τt and εt . This SV is the source of time-variation in the covariance matrix ΥΥΥtΥΥΥ ′t = Et
{ΥΥΥtWt+1W

′
t+1ΥΥΥ ′t}

and, thus, volatility in Xt+1. There are also time-varying dynamics in the transition matrix, ΘΘΘt , of the

state system (10.2). The source of these dynamics is the TVP-AR(k) of εt . Nonetheless, the system of

state equations (10.2) is linear conditional on ςη,t , ςυ,t , and θ1,t , . . . , θk,t , which are known at date t.

The state space system (10.1) and (10.2) is a challenge to evaluate. Part of the problem is to com-

pute h-step ahead RE and SI forecasts of πt and Xt when θ1,t , . . . , θk,t produce time-varying persistence

in εt , which drives variation ΘΘΘt . Since nonlinearities in ΘΘΘt rule out using the LIE to compute Etπt+h,

Ftπt+h, and FtXt , we appeal to two aspects of the anticipated utility model (AUM) to solve the problem.

The AUM resurrects the LIE by assuming (i) agents are ignorant of the true DGP and (ii) treats the TVPs

of the SW-UC model (2.1)–(2.5) and the SI law of motion (4.2) as fixed (locally) at each date t. Under the

AUM, we hold the current state of these TVPs fixed when generating h-step ahead forecasts.10

10Cogley and Sbordone (2008) employ these assumptions to study the dynamics of trend and gap inflation within
a TVP-new Keynesian Phillips curve. They note Kreps (1998) argues that agents engaging in these behaviors are
acting rationally when seeing through to the true model is costly. These assumptions also result in decision
making that is often close to Bayesian forecasting, according to Cogley and Sargent (2008).
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The AUM assumptions are engaged to evaluate multi-period forecasts of Etπt+h and Ftπt+h. The

state space of the SW-UC model (10.1) and (10.2) produces the h-step ahead RE inflation forecast

Etπt+h = δXΘΘΘht|tXt|t . (11)

The subscripts on ΘΘΘt|t and Xt|t are held fixed at the date t state of the joint DGP of the SW-UC model

(2.1)–(2.5) to be consistent with the AUM.

The next step is to find a recursion for the SI prediction of Xt . This recursion links Ftπt+h to

the state of the SW-UC models and the SI law of motion by creating a mechanism to update FtXt given

Xt and Ft−1Xt−1. Although the path of the backward-looking SI law of motion of Xt is also altered by

changes in λt−1, the example in the previous section shows that shifts in λt are not an impediment in

constructing a map from FtXt to Ftπt+h. The problem is the AUM also tells us to track the history of

ΘΘΘt when constructing the smoothing recursion that describes the path of FtXt .

The map from FtXt to Ftπt+h is built starting from FtXt+h =
(
1 − λt−1

)
EtXt+h + λt−1Ft−1Xt+h,

given εt is the TVP-AR(k) of (2.3). Subsequent to iterating backward this SI law of motion, the result

is the approximate EWMA formula FtXt+h =
∑∞
j=0 µλ,t−1−j

(∏j
`=0 λt−1−`

)
Et−jXt+h. Since Et−jXt+h =

ΘΘΘh+jt−j|t−jXt−j|t−j , FtXt+h =
∑∞
j=0 µλ,t−1−j

(∏j
`=0 λt−1−`

)ΘΘΘh+jt−j|t−jXt−j|t−j . Next, set h = 0 to obtain

FtXt =
∞∑
j=0

µλ,t−1−j

 j∏
`=0

λt−1−`

ΘΘΘjt−j|t−jXt−j|t−j . (12)

Under the hypothesis of the AUM, fastening together the EWMA formula (5) of Ftπt+h, the RE inflation

forecast (11), and the smoothing formula (12) of FtXt results in

Ftπt+h = δXΘΘΘht|tFtXt , h = 1, . . . ,H. (13)

The term structure (13) joins Ftπt,t+h to the SI nowcast of Xt , which connects πSPFt,t+h to the SI forecasts

of trend and gap inflation through the SPF measurement error equation (4.1). An implication is shocks

to θ1,t , . . . , θk,t generate nonlinear fluctuations in πSPFt,t+h as well as πt .

We still need a recursion for the SI forecast of Xt when the AUM is invoked because of a TVP-AR(k)

in εt . First, pull the first four terms out of the infinite sum of the smoothing formula (12)

FtXt =
(
1− λt−1

)
Xt +

(
1− λt−2

)
λt−1ΘΘΘt−1|t−1Xt−1|t−1 +

(
1− λt−3

)
λt−1λt−2ΘΘΘ2

t−2|t−2Xt−2

+
(
1− λt−4

)
λt−1λt−2λt−3ΘΘΘ3

t−3|t−3Xt−3 +
∞∑
j=4

µt−1−j

 j∏
`=0

λt−1−`

ΘΘΘjt−j|t−jXt−j|t−j .
10



By induction, the sequence of these terms point to the SI law of motion of Xt

FtXt =
(
1− λt−1

)
Xt + λt−1ΘΘΘt−1|t−1Ft−1Xt−1. (14)

as agreeing with the smoothing formula (12). A key feature of the SI law of motion (14) of FtXt is that its

updating relies on λt−1 interacting with the lagged time-varying persistence in εt , which is summarized

by ΘΘΘt−1|t−1. The AUM assumption is responsible for this restriction on the SI law of motion (14) of

FtXt . This restriction is consistent with the SI forecaster holding the TVP-AR(k) fixed at date t−1 when

updating from Ft−1Xt−1 to FtXt .

The system of state equations of the SW-UC model and the time-varying SI law of motions are

the laws of motion of Xt+1 and Ft+1Xt+1. Stack the law of motion of Xt+1 on top of the law of motion

Ft+1Xt+1, which are equations (10.2) and (14), to create the system of state equations

St+1 = AAAtSt + BBBtWt+1, (15.1)

where St =
[
X′t FtX

′
t
]′

, AAAt =

 ΘΘΘt 0m×m(
1− λt

)ΘΘΘt λtΘΘΘt
,m=1+k, and BBBt =

 ΥΥΥt(
1− λt

)ΥΥΥt
. The state

equations (15.1) depict λt having an impact on transition dynamics and the volatility of the system

similar to that seen in the state equations (9.1) of the previous section’s example of a fixed coefficient

AR(1) inflation gap. However, a TVP-AR(k) inflation gap introduces an additional nonlinearity into the

transition dynamics of the system of state equations (15.1). The interaction of time-varying persistence

in εt and λt is one more margin on which movements in St drive fluctuations in πSPFt,t+h.

Time-varying inflation gap persistence also appears in the system of observation equations driven

by St . These equations place the observation equation (10.1) of the SW-UC model on top of the SPF

measurement error equations (4.1) combined with the SI nonlinear term structure (13), which is

Yt = CCCt St + DDDUt , (15.2)

where CCCt =



δX 01×m

01×m δXΘΘΘt
...

...

01×m δXΘΘΘH
t


, DDD = IH+1, Ut =

[
0 ζt,t+1 . . . ζt,t+H

]′
, and the diagonal matrix

ΩΩΩU = E
{
UtU

′
t

}
.11 In the system of observation equations (15.2), the response of πSPFt,t+h to movements

11The uncorrelated measurement error could be made at the level of the output price deflator rather than toπSPFt,t+h
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inΘΘΘt do not violate the AUM assumptions. Furthermore, shocks toΘΘΘt produce fluctuations in Yt in two

ways. There is the direct impact these shocks have on πSPFt,t+h in the observation system (15.2) through

the term structure created by the TVP-AR(k) and the effect these shocks have by altering the transition

dynamics of the system of state equations (15.1). Note, however, the state space system (15.1) and

(15.2) is linear given realizations of ςη,t , ςυ,t , θ1,t , . . . , θk,t , and λt .

3 Econometric Methods

We estimate the state space system (15.1) and (15.2) using Bayesian SMC methods, which involve a

particle filter algorithm adapted from Creal (2012) and Herbst and Schorfheide (2014). Durbin and

Koopman (2002), and Godsill, and Doucet, and West (2004) provide instructions to run a Monte Carlo

smoothing simulator. These tools are also applicable to a state space system in which persistence in

εt is generated by a fixed coefficient AR(k), as is the state space system (9.1) and (9.2) where k = 1.

3.1 Rao-Blackwellization of a Nonlinear State Space Model

Creal (2012) discusses a particle filter that relies on the Rao-Blackwellization process of Chen and Liu

(2000). In this case, Rao-Blackwellization snaps the state vector of a nonlinear state space model in two.

One vector of state variables are responsible for the nonlinearities in the state space system. Given

a realization of this vector, the remaining state variables are generated by a linear state space model.

Thus, the state space system (15.1) and (15.2) is consistent with applying the Rao-Blackwellization

process to the joint DGP of the SW-UC model (2.1)–(2.5) and the SI prediction mechanism of the average

SPF respondent (4.1)–(4.3), conditional on the latent state variables lnς2
η,t , lnς2

υ,t , θ1,t , . . . , θk,t , and

λt . An implication is that, conditional on these state variables, applying the Kalman filter to the state

space system (15.1) and (15.2) analytically produces the distribution of St .

Analytic integration of the distribution of St endows the particle filter with greater numerical

efficiency. The efficiency gains are obtained by applying the Kalman filter to the state space system

(15.1) and (15.2) to generate St and not by simulating this state vector. However, the Kalman filter

as in the observation system (15.2). The alternative assumption implies cumulative inflation forecasts possess
uncorrelated measurement errors. Cumulative inflation forecasts have correlated measurement errors when
πSPFt,t+h is endowed with an uncorrelated measurement error. Or results are similar using either measurement
error assumption. We report estimates of the state space model (15.1) and (15.2) because log likelihoods are
greater under the assumption the uncorrelated measurement error, ξt,t+h, is attached to πSPFt,t+h. However,
estimates based on the alternative measurement error assumption are available on request.
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needs realizations of lnς2
η,t , lnς2

υ,t , θ1,t , . . . , θk,t , and λt to accomplish this task. The Rao-Blackwellized

particle filter solves this problem by simulating M realizations or particles of these state variables on

which the Kalman filter is run to create the analytic distribution of St .12

The particle filter produces filtered and smoothed estimates of the variables in St using the linear

state space system (15.1) and (15.2) conditional on the data Yt and the state variables lnς2
η,t , lnς2

υ,t ,

θ1,t , . . . , θk,t , and λt . Since these TVPs evolves as a independent random walks, initial conditions and

volatility scale parameters are needed to generate synthetic samples of these random walks. The scale

volatilities are collected in Ψ = [ση συ σζ,1 . . . σζ,H σφ,1 . . . σφ,k
]′

.13 At the moment, calibration

methods are applied to obtain values for the elements of Ψ .14

The calibration of Ψ is summarized in table 1. Table 1 shows the scale of the volatility of inno-

vations to the SVs of trend and gap inflation, ση and συ,t , equal 0.2, which matches values used by

Stock and Watson (2007). There is no a prior evidence to calibrate the scale of the volatility of the

innovations to λt , σζ,h, h = 1, . . . , 5. We settle on σκ = 0.05 to scale the volatility of the innovation,

κt , to λt subsequent to running simulation experiments on a grid of values for σκ . The same process

is used to fix the volatilities of ξt,t+h, σζ,h, which yields σζ,h = 1.0 for all h. Table 1 also indicates that

we estimate models with a TVP-AR(1) and a TVP-AR(2) for εt . The scale of the volatilities of innovations

to θ1,t or θ1,t and θ2,t are σφ,1 = 0.05 or σφ,1 = 0.10 and σφ,2 = 0.05 using a similar procedure.

We also have to calibrate initial conditions for the random walk processes of Vt . The initial condi-

tions of lnς2
η,0 and lnς2

υ,0 are sampled using lnς2
η,0 ∼ N

(
−
[
2.5+ 2 ln 2

]
, 10

)
and lnς2

υ,0 ∼ N
(
−2.5, 10

)
.

Since λt is restricted to the open interval between zero and one, we assume λ0 is drawn from a trun-

cated normal distribution with a mean of 0.5 and standard deviation of one. The initial condition θ1,0

rests on a similar assumption when k = 1 because θ1,t ∈
(
−1, 1

)
. In this case, θ1,0 ∼ truncN

(
0, 1

)
.

The truncated normal-random walks ϑ1,t and λt along with lnς2
η,t and lnς2

υ,t are the TVPs that

enter our particle filter algorithm when k = 1. In this case, the state space system (15.1) and (15.2) is

linear conditional on Yt and Vt =
[
lnς2

η,t lnς2
υ,t ϑ1,t λt

]′
. We simulate this state vector using

Vt+1 = Vt + ΩΩΩ0.5
E Et+1, (16)

where the vector DE =
[
σ 2
η σ 2

υ σ 2
φ,1 σ

2
κ
]

contains the non-zero elements of the diagonal matrix ΩΩΩE,

12Chen and Liu (2000) refer to this particle filter algorithm as a mixture of Kalman filters.
13When εt is a fixed coefficient-AR(k), θ1, . . . , θk are added to Ψ and σφ,1 . . . , σφ,k are deleted.
14In a future draft, we plan to estimate St and Ψ jointly by embedding a particle filtering inside a Metropolis-

Hastings Markov chain Monte Carlo simulator using methods developed by Andrieu, Doucet, and Holenstein
(2010), Flury and Shephard (2011), Herbst and Schorfheide (2014) and Schorfheide, Song, and Yaron (2014).
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the elements of Et+1 =
[
ξη,t+1 ξυ,t+1 φ1,t+1 κt+1

]′
are innovations distributed IID standard normal, and

θ1,t+1 and λt+1 are truncated to remain in on the open intervals
(
−1, 1

)
and

(
0, 1

)
, respectively. This

system describes the evolution of Vt and shows that given knowledge of it the state space system (15.1)

and (15.2) can be evaluated using standard Kalman filter methods.

Guaranteeing the TVP-AR(2) for εt is stationary at every date t presents another estimation prob-

lem. Morley, Nelson, and Zivot (2003) provide an example in which a pair of AR(2) coefficients have

roots outside the unit circle; also see Morley (1999) and Xu (2013). We adapt their approach to restrict

θ1,t and θ2,t to guarantee εt is stationary. The first step revises equation (2.5) of the SW-UC model,

which are the random walks of θj,t , j = 1, . . . , k, by imposing the restrictions

θ1,t =
2ϑ1,t

1 +
∣∣∣ϑ1,t

∣∣∣ , (17.1)

θ2,t =
(
1−

∣∣∣ϑ1,t

∣∣∣)ϑ2,t +
∣∣∣ϑ1,t

∣∣∣, (17.2)

where ϑ1,t is unrestricted, but ϑ2,t ∈
(
−1, 1

)
. The “raw” TVP-AR coefficients ϑ1,t and ϑ2,t evolve as

independent random walks

ϑj,t = ϑj,t−1 + σφ,jφj,t , (17.3)

where j = 1, 2, andφj,t remains a standard normal random variable. The initial conditions for ϑ1,t and

ϑ2,t are ϑ1,0 ∼ N
(
0, 100

)
and ϑ2,0 is sampled from a truncated standard normal distribution because

ϑ2,t ∈
(
−1, 1

)
. The particle filter algorithm described below draws ϑ1,0 and ϑ2,0 to initialize the two

random walks of (17.3) and samples from φ1,t ∼ N
(
0,1

)
and φ2,t ∼ N

(
0,1

)
to generate synthetic

samples of ϑ1,t and ϑ2,t . These artificial samples are transformed into samples of θ1,t and θ2,t using

equations (17.1) and (17.2) to ensure the TVP-AR(2) of εt has roots outside the unit circle.

The “raw” TVP-AR coefficient ϑ1,t replaces the TVP-AR1 coefficient θ1,t in our particle filter al-

gorithm and ϑ2,t is added to it when k = 2. Thus, the state space system (15.1) and (15.2) is linear

conditional on Yt and the multivariate random walk (16), where ϑ1,t and ϑ2,t , which evolve according

to the random walk (17.3), become part of Vt =
[
lnς2

η,t lnς2
υ,t ϑ1,t ϑ2,t λt

]′
, and equations (17.1) and

(17.2) produce θ1,t and θ2,t .

3.2 The Particle and Kalman Filters

The Rao-Blackwellization process yields a state space model (15.1) and (15.2) that is linear in St given

a history of V1:i, i = 1, . . . , t, t ≤ T . Thus, Kalman filtering techniques are used to generate samples
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of the unobserved states, St . Nonetheless, we resort to the particle filter to approximate the density

of the latent state Vt using a sequential importance sampler with resampling (SISR). A SIS builds the

density of S1:T by iterating through the sample from t=1 given initial conditions, to t=2 conditional on

S1:1, Y1:1, V1:1, and Ψ , and ending at t=T conditional on S1:T−1, Y1:T−1, V1:T−1, and Ψ . The resampling

step shuffles the M particles of
{
S
(i)
1:T

}M
i=1

using weights that are estimates of a particle’s share of the

state space model’s likelihood, which guarantees no single particle will receive all the probability mass

in constructing the density of
{
S
(i)
1:T

}M
i=1

as M becomes large. The weights are calculated by running

each particle through the Kalman filter to obtain an estimate of the likelihood.

We adapt algorithm 3 of Creal (2012, section 2.5.7) and an algorithm of Herbst and Schorfheide

(2014, section 7.4.3) to estimate the state space model (15.1) and (15.2) conditional on Yt and the

multivariate random walk (16). This particle filter consists of the following steps.

1. The filter is initialized by drawingM particles V
(i)
0 , i = 1, . . . , M , from the prior distributions (16),

where conditional on V
(i)
0 , S0 has a normal prior S0 ∼ N(S(i)0|0, ΣΣΣ

(i)
0|0).

2. Repeat the following steps for t = 1, . . . , T , where each step uses the particles V
(i)
t−1, S(i)t−1|t−1, and

ΣΣΣ(i)t−1|t−1, i = 1, . . . , M , which are the outcomes of applying the Kalman filter in the previous step.

(a) For i = 1, 2, . . . , M , draw new particles V
(i)
t conditional on V

(i)
t−1, given the prior (16).

(b) At date t, engage the Kalman filter to compute

ΣΣΣ(i)t|t−1 = AAA
(i)
t ΣΣΣ

(i)
t−1|t−1

(
AAA
(i)
t

)′
+ BBB

(i)
t

(
BBB
(i)
t

)′
,

ΩΩΩ(i)t|t−1 = CCC
(i)
t ΣΣΣ

(i)
t|t−1

(
CCC
(i)
t

)′
+ DDDΩΩΩ(i)U DDD′,

Ỹ
(i)
t = Yt − AAA

(i)
t S

(i)
t|t−1,

˜l(i)t = −1
2

[
ln
∣∣∣ΩΩΩ(i)t|t−1

∣∣∣ + (
Ỹ
(i)
t

)′ (
ΩΩΩ(i)t|t−1

)−1
Ỹ
(i)
t

]
,

KKK
(i)
t = ΣΣΣ(i)t|t−1

(
CCC
(i)
t

)′ (
ΩΩΩ(i)t|t−1

)−1
,

S
(i)
t|t = AAA

(i)
t S

(i)
t|t−1 + KKK

(i)
t Ỹ

(i)
t ,

ΣΣΣ(i)t|t = ΣΣΣ(i)t|t−1 − ΣΣΣ
(i)
t|t−1

(
CCC
(i)
t

)′ (
ΩΩΩ(i)t|t−1

)−1
CCC
(i)
t ΣΣΣ

(i)
t|t−1,

across the M particles, (i) = 1, 2, . . . , M .15

(c) Store the conditional moments S(i)t|t andΣΣΣ(i)t|t and particle draws V(i)t to report estimates of the

joint DGP of the SW-UC model and the average SPF respondent’s SI prediction mechanism.

15There are a missing observations in the SPF inflation data that the Kalman filter handles using standard methods.
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(d) Compute particle weights ω(i)t =
exp

{
˜l(i)t
}

∑M

i exp
{
˜l (i)t

} .

(e) For t < T , prepare the next iteration by resampling the particles V
(i)
t , S(i)t|t , and ΣΣΣ(i)t|t , which

corresponds to drawing from a multinominal distribution for i using the pdf of ω(i)t .16

3. The filtered distribution of Vt conditional on Y1:t and Ψ is approximated by the discrete dis-

tribution of particles V
(i)
t using the pdf of ω(i)t and the associated filtered distribution of St is

approximated by a mixture of normals N
(
S
(i)
t|t , ΣΣΣ

(i)
t|t
)

with the weights ω(i)t . Thus, the filtered

means of St and Vt are approximated by St|t =
∑M
i=1ω

(i)
t S

(i)
t|t and Vt|t =

∑M
i=1ω

(i)
t V

(i)
t .

4. Since the M particles have been reweighted at every step, the date t data density is estimated by

calculating the average of ˜l(i)t over the M particles

P
(
Yt

∣∣∣Y1:t−1; Ψ) ∝ 1
M

M∑
i=1

exp
{
˜l(i)t
}
, t = 1, . . . , T . (18)

The data density P
(
Yt

∣∣∣Y1:t−1; Ψ) is a vehicle for computing the log likelihood of the state space system

(15.1) and (15.2). The density of (18) is summed across the t = 1, . . . , T observations to produce

L
(Ψ∣∣∣Y1:T

)
=

T∑
t=1

log

(
P
(
Yt

∣∣∣Y1:t−1; Ψ)). (19)

Below we report the log likelihood (19) of versions of the conditionally linear state space system (15.1)

and (15.2) that differ by restrictions on the lag length of the TVP-AR(k) of εt and whether the AR

coefficients are fixed or time-varying. Thus, we evaluate competing versions of the state space model

(15.1) and (15.2) using the log likelihood (19) when Ψ is calibrated.17

3.3 The Mixture Smoother

We compute smoothed draws of Vt conditional on the entire sample of observations Y1:T and the

calibrated vector Ψ using the algorithm of Godsill, Doucet, and West (2004). Given a distribution of M

16Creal (2012) advises reweighting the particles V
(i)
t , S(i)t|t , and ΣΣΣ(i)t|t only to prepare the t+1 step of the particle

filter. However, the unweighted particles are retained to report results and to compute smoothed estimates.
17When Ψ is estimated, a result in Andrieu, Doucet, and Holenstein (2010) is relevant. They show the distribution

of a Markov chain Monte Carlo (MCMC) simulator is independent of the error generated by a particle in a SMC
algorithm. An implication is the density (18) provides an unbiased estimate of the likelihood at date t. Thus,
a Metropolis-Hasting MCMC simulator wrapped around a particle filter produces estimates of the elements Ψ
across different models that can be evaluated using unbiased estimates of the log likelihood (19).
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particles V
(i)
t with weights ω(i)t , i = 1, . . . , M, generate J sequences of smoothed draws, denoted Ṽ

(j)
t

for j = 1, . . . , J by iterating the next algorithm. For each j, draw Ṽ
(j)
T from the filtered particle draws

V
(i)
T weighted by ω(i)T , and then iterate backwards from t = T−1 to t = 1 in the following steps

1. For each particle i= 1, . . . , M , calculate ω̃(i)t =w
(i)
t f

(
Ṽ
(j)
t+1

∣∣∣V(i)t ), where f
(
Ṽ
(j)
t+1

∣∣∣V(i)t ) is computed

from the system of transition equations (16).18

2. Draw Ṽ
(j)
t from the set of filtered particles V

(i)
t with weight ω̃(i)t .

3. Approximate the posterior distribution of Vt conditional on the entire sample of observations

Y1:T and the vector of parameters Ψ using the J sequences of Ṽ
(j)
1:T .

4. The smoothed distribution of St is calculated given the previous approximation

P
(
S1:T

∣∣∣Y1:T ; Ψ) = ∫
V1:T

P
(
S1:T

∣∣∣V1:T ,Y1:T ; Ψ) dF(V1:T
)
≈

J∑
j=1

P
(
S1:T

∣∣∣Ṽ(j)1:T , Y1:T ; Ψ) . (20)

The density P
(
S1:T

∣∣∣Ṽ(j)1:T , Y1:T ; Ψ) is the multivariate normal distribution produced by the Kalman

smoother for the conditionally linear state space (15.1) and (15.2) because the approximation on the

right of (20) conditions on a single trajectory of V1:T . For each sequence of Vt generated by the particle

smoother, we generate draws for S1:T from the Kalman smoother’s distribution using the disturbance

smoothing algorithm of Durbin and Koopman (2002).19

4 The Data and Estimates

Our motivation for opening up the SW-UC model SI law of motion along these dimensions rests on

the existing literature. As surveyed by Creal (2012) and Shephard (2013), there is persuasive evidence

that the SVs of trend inflation and the inflation gap have varied substantially in recent US data; also

see Stock and Watson (2010), Grassi and Proietti (2010) and Mertens (2015). Further, Nason and Smith

(2014) report that in the last 45 years of U.S. data stickiness in SPF inflation predictions, as described

by λ, has changed. This section contributes new evidence about the comovement of σε,t , σε̃,t , and λt

over the business cycle along with evidence of time variation in inflation gap persistence.

18For λt , θ1,t (k = 1) and ϑ2,t (k = 2), the conditional pdf s are truncated normals.
19An alternative smoothing algorithm generating jointly draws Ṽ

(j)
t and conditional moments S

(j)
t|T and ΣΣΣ(j)1,t|T is

sketched by Prado and West (2010).
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4.1 The Data

Our estimates are conditional on a sample of real time realized inflation, πt , and average SPF inflation

prediction, πSPFt,t+h. We obtain this sample from the Real-Time Data Set for Macroeconomists (RTDSM),

which is compiled by the Federal Reserve Bank (FRB) of Philadelphia.20 The data consist of observations

from 1968Q 4 through 2014Q 2 for πt as well as πSPFt,t+h at horizons h = 1, . . . , 5.

Realized inflation is computed from the RTDSM’s quarterly real-time vintages of the GNP and

GDP deflator.21 These vintages reflect data releases that were publicly available around the middle

of quarter t and most often the publicly available information contains observations through quarter

t−1. Using these vintages of real time realized inflation, we compute the quarterly difference in the log

levels of real time observations on the implicit GNP or GDP deflator. These quarterly price level data

are transformed into inflation measured at an annualized rate using πt = 400
[
lnPt − lnPt−1

]
, where

Pt denotes the date t level of the GNP or GDP deflator.

The average SPF predictions include a nowcast of the GNP or GDP deflator’s level and forecasts

of these price levels for the next four quarters. These surveys are most often collected at the middle

of date t (i.e., the quarter), which suggests πSPFt,t+h is reported without complete knowledge of πt . We

comply with this timing protocol by assuming date t SPF inflation predictions are conditional on data

available through the end of date t−1. Thus, the average SPF nowcast, 1-step, . . . , 4-step predictions,

which are denotedπSPFt,t+1, πSPFt,t+2, . . . , πSPFt,t+5, are made at the end of date t−1. These inflation predictions

are computed as described previously using the annualized log differences between the SPF prediction

of a deflator’s level and the quarterly lagged real time realized price level supplied by the RTDSM.

4.2 The Fit of the Joint DGPs

Table 2 lists log marginal data densities, which are generated using the particle filter algorithm de-

scribed in section 3.2, especially its step 2(b), and equations (19) and (20). The log marginal data

densities are employed to gauge the fit of the competing joint DGPs of the SW-UC model and SI predic-

tion mechanism of the average SPF respondent. The competing DGPs are distinct along two dimensions.

Two DGPs are defined by the lag length of the TVP-AR(k) of εt , which is either k = 1 or k = 2. Setting θ1

= θ1,t or θ1 = θ1,t and θ2 = θ2,t creates two more DGPs. The four joint DGPs are labeled in table 2 the

20The data are available at http://www.philadelphiafed.org/research-and-data/real-time-center/
survey-of-professional-forecasters/.

21Before 1992Q 1, the SPF and RTDSM measured the U.S. output price level with the implicit GNP deflator. From
1992Q 1 to 1996Q 4, the implicit GDP deflator pays this role, but this deflator is replaced by the chain weighted
GDP deflator from 1997Q 1 to the end of the sample.
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SI-λt Law of Motion plus SW-UC-SV-AR(1), SW-UC-SV-AR(2), SW-UC-SV-TVP-AR(1), or SW-UC-TVP-AR(2)

model that denote the SI prediction mechanism of the average SPF respondent plus the SW-UC model

with SV and a fixed coefficient AR(1), fixed coefficient AR(2), TVP-AR(1), or TVP-AR(2), respectively.

This gives us four versions of the joint DGP of the SW-UC model and SI prediction mechanism of

the average SPF respondent to estimate. We evaluate the fit of the SI-λt-law-of-motion-SW-UC-SV-AR(1),

-SW-UC-SV-AR(2), -SW-UC-SV-TVP-AR(1), and -SW-UC-TVP-AR(2) models by comparing the associated

log marginal data densities. Table 2 contains these log marginal data densities, which show the models

with TVP-AR inflation gaps dominate models with inflation gap persistence tied to fixed coefficient

ARs. Across the SI-λt-law-of-motion-SW-UC-SV-TVP-AR(1) and SI-λt-law-of motion-SW-UC-SV-TVP-AR(2)

models, the relevant log marginal data densities indicates the former model dominates the model with

the higher-order TVP-AR(2) driving time-varying persistence in εt . Thus, the data favor the SI-λt-law-

of-motion-SW-UC-SV-TVP-AR(1) model. The rest of the paper focuses almost exclusively on estimates

of the SI-λt-law-of-motion-SW-UC-SV-TVP-AR(1) model.

4.3 Realized Inflation, Trend Inflation, and Gap Inflation

Figures 1 to 5 plot filtered RE trend inflation, τt|t , filtered SI trend inflation Ft|tτt , the h-step ahead

average SPF inflation prediction, πSPFt,t+h, and realized real time inflation, πt on the 1968Q 4 to 2014Q 2

sample. The average SPF inflation nowcast, 1-step ahead inflation prediction, 2-step ahead inflation

prediction, 3-step ahead inflation prediction, and 4-step ahead inflation prediction appear in figures 1

to 5, as solid (green) lines with diamonds. However, remember we link πSPFt,t+1, πSPFt,t+2, . . . , πSPFt,t+5 to the

average SPF inflation nowcast, 1-step ahead inflation prediction, . . . , 4-step ahead inflation prediction

to respect the timing of when the SPF is collected by the FRB of Philadelphia. Otherwise, figures 1 to 5

contain the same solid (black) plots of τt|t , dashed (red) plots Ft|tτt , and dotted (blue) plots πt . Also,

the shaded areas in figures 1 to 5 are NBER dated recessions.

Differences across πSPFt,t+1, . . . , πSPFt,t+5 distinguish figures 1 to 5. Figures 1 to 5 agree the inflation

spike that coincides with the first oil price shock of 1973-1974 is dominated by gap inflation, εt , while

trend inflation, τt , is responsible for the bulk of the peak in inflation during the early 1980s. Under the

SI-law-of-motion-SW-UC-SV-TVP-AR(1) model, the average SPF respondent leans more on the “signal”

of τt and less on the “noise” of εt between the first oil price shock and the Volcker disinflation.

As is well known, πSPFt,t+h become smoother (i.e., less volatile) moving from h=1 to h=5. This

information and πt is employed by the SI-λt law of motion plus SW-UC-SV-TVP-AR(1) model to generate
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estimates of τt|t and Ft|tτt . The estimates τt|t and Ft|tτt are close to identical for the entire sample

period except from late 1968 to early 1970 and from early 1995 to late 1999 as seen in figure 1 to

figure 5. During the latter episode, τt|t is lower than Ft|tτt while the opposite is true at the start of

the sample period. Although Ft|tτt and τt|t differ in late 1968 and 1969, by the early 1970s the SI

forecaster updates Ft|tτt to τt|t , which suggests λt is closer to zero than one at the start of the sample.

The second half of the 1990s sees Ft|tτt is greater than τt|t . The persistence of this gap indicates the

average SPF participant is slow to update Ft|tτt in response to movements in τt|t , which implies λt is

greater than a half in the late 1990s. We confirm these observations below when discussing estimates

of λt , which are plotted in figures 10 and 11.

Figures 1 to 5 also differ by the distance between πSPFt,t+1, . . . , πSPFt,t+5 and τt|t and Ft|tτt from early

1995 to late 1999. During this period, πSPFt,t+1 is nearer to τt|t than to Ft|tτt as displayed in figure 1,

but for the same years figure 5 shows πSPFt,t+5 and Ftτt|t are nearly identical. Across h = 2, 3, and 4,

πSPFt,t+h moves to Ft|tτt and away from τt|t in the second half of the 1990s as depicted in figures 2, 3,

and 4. These shifts in the average SPF respondent’s inflation predictions are further confirmation that

the frequency of SI updating is low from early 1995 to late 1999.22

Filtered, εt|t , and smoothed, εt|T , inflation gaps are plotted in figure 6. Figure 6 shows εt|t and εt|T

rise between 7 to 9% from 1973Q 4 to 1974Q 4. At the same time, τt|t and Ft|tτt are less than 4%. The

inflation spike of the early 1980s provides a striking contract because τt|t and Ft|tτt rise to almost

8%. The upshot is the average SPF participant gives εt|t (or εt|T ) less responsibility for generating

the inflation spike of the early 1980s. Thus, figure 6 provides evidence the average SPF respondent

attributed the inflation spike tied to the first oil price shock to movements in εt , but by the early 1980s

the beliefs of the average SPF respondent about the DGP of inflation have changed. However, this

evidence differs from Cogley and Sbordone (2008) whose estimates of a TVP-new Keynesian Phillips

curve model ascribe a large role to gap inflation in generating πt between 1975 and 1982.

Another interesting feature of figure 6 is εt|t and εt|T are most often negative from 1983 to 2000.

This behavior in gap inflation is consistent with πt below trend inflation, which is observed in figures 1

22During this period, τt|t , Ft|tτt ,πSPFt,t+1, . . . , andπSPFt,t+5 move in ways consistent with the Fed engaging in a monetary
policy of “opportunistic disinflation” as described by Meyer (1996) and Orphanides and Wilcox (2002). For
example, Orphanides and Wilcox quote Vice Chairman Blinder and President Boehne of the FRB-Philadelphia
as advocating the 1990s Fed wait for a state of the world in which there is little cost to a monetary policy that
lowers Ft|tτt , πSPFt,t+3, πSPFt,t+4, and πSPFt,t+5 instead of taking actions during periods when the potential for a costly
disinflation are large. Although the SW-UC-SV-TVP-AR(1) model recovers the average SPF respondent’s beliefs
about changes in the inflation regime, this evidence cannot be used to evaluate regime shifts in monetary policy.
We need information about monetary policy interventions to conduct this evaluation as studied, for example,
by Leeper and Zha (2003).
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to figures 5. The intuition is inflation below its trend predicts the average SPF respondent anticipates

inflation to rise in the future; see Nelson (2008). However, (ex post) inflation is falling from 1983 to

2000, which suggests that during these years the average SPF respondent is updating less frequently

to changes in Etπt+h driven by negative realizations of εt . Thus, shocks to εt that push πt below τt

in the SW-UC-SV-TVP-AR(1) model accords with a rise in λt . This prediction of the SI-λt law of motion

plus SW-UC-SC-TVP-AR(1) model is supported by figures 10 and 11, which are reviewed below.

Fluctuations in εt|t and εt|T also display less variation after the double dip recessions of the early

1980s. These measures of gap inflation are less than 3% from 1980Q 4 to 1982Q 4. During the rest

of the sample, figure 6 shows continued moderation in gap inflation because εt|t and εt|T are larger

than 2% (in absolute value) only in 1987Q 1, 1991Q 1, 2001Q 4, and 2008Q 3. Except for 1987Q 1, these

dates fall within NBER dated recessions. Our results indicate the volatility of εt is subdued from 1983

to the early 2000s compared with its volatility during the 1970s, which is similar to estimates presented

by Nason (2006), Stock and Watson (2007, 2010), Grassi and Prioietti (2010), Creal (2012), Shephard

(2013), Nason and Smith (2014), and Mertens (2015). The next section reports estimates of the SVs of

τt and εt , which are ςη,t and ςυ,t , respectively.

4.4 Trend and Gap Inflation Volatilities

Figures 7 and 8 contain estimates of the filtered and smooth SVs ςη,t|t , ςη,t|T , ςυ,t|t and ςυ,t|T . The

filtered (smoothed) SVs appear in the top (bottom) panel of figures 7 and 8 as solid blue (red) lines.

These panels include the interquantile range confidence (i.e., running from the 25th to 75th quantile)

bands, which are the thinner lines in these figures.

Several aspects of the filtered and smoothed SVs of τt and εt stand out in figures 7 and 8. First, the

plots of ςη,t|t and ςυ,t|t exhibit multiple peaks. Figure 8 displays the largest spike in ςυ,t|t at 1974Q 4.

A smaller peak in ςυ,t|T is also observed after the 1973–1975 recession in the bottom panel of figure 8.

The largest peak in ςη,t|t occurs in 1982Q 1 as seen in figure 7. This is additional evidence that the first

oil price is dominated by shocks to εt while around the Volcker disinflation the underlying sources of

realized inflation were tied to permanent factors influencing τt . These estimates of the SV of τt and εt

differ from estimates reported by Nason (2006), Grassi and Prioietti (2010), Stock and Watson (2010),

Creal (2012), Shephard (2013), and Nason and Smith (2014). They obtain estimates of the SV of εt that

do not begin to decline until the mid-1980s. However, Mertens (2015) reports estimates of the SV of τt
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and εt that are similar to figures 7 and 8.23 Nonetheless, ςη,t|t (ςυ,t|t) is always less than ςυ,t|t (ςυ,t|T )

as displayed in figures 7 and 8, which matches estimates beginning with Stock and Watson (2007).

Figures 7 and 8 also depict long run information about the SVs of τt and εt . The information

is the low frequency movements in ςη,t|T and ςυ,t|T . For example, ςη,t|T exhibits a steady decline that

begins in 1983 and lasts to the end of the sample. Clark and Davig (2011) also report a drop in the SV

of shocks driving πSPFt,t+h in the long run using a vector AR with SV.24 Similar behavior is displayed by

ςυ,t|T , but the decline starts in 1975. Also, ςυ,t|T rises from 2002 to 2008 and then falls to 2014Q 2.

An increase in the SV of εt between the recessions of 2001 and 2007–2009 is consistent with results in

Creal (2012), Mertens (2015), and Nason and Smith (2014).

Another revealing feature of figures 7 and 8 is the behavior of the SVs of trend and gap inflation

around NBER dated recessions. The filtered SVs, ςη,t|t and ςυ,t|t , often rise during or after a NBER

recessions as depicted by figures 7 and 8. These movements are not observed in the two-sided estimates

ςη,t|T and ςυ,t|T of figures 7 and 8.

4.5 Time-Varying Inflation Gap Persistence and SI Updating

Estimates of θ1,t and λt are found in figures 9, 10, and 11. Figure 9 (10) presents estimates of the

inflation gap’s TVP-AR1 (time-varying SI updating frequencies) in filtered, θ1,t|t (λt|t), and smoothed,

θ1,t|T (λt|T ), formats. The filtered estimates appear in the top panel of figures 9 and 10 as solid (blue)

plots surrounded by thinner lines, which are inter-quantile confidence bands. The bottom panel of

these figures plot θ1,t|T and λt|T with a solid (red) lines and its confidence bands with thinner lines.

The plots of θ1,t|t , λt|t , θ1,t|T and λt|T are the posterior means of the particle draws moving quarter

by quarter through the 1968Q 4 to 2014Q 2 sample.

Figure 9, which plots θ1,t|t and θt|T , contains meaningful statistical and economic evidence about

time-varying persistence in εt . First, filtered persistence in εt ranges from 0.25 to 0.8 in the 1970s. Next,

θ1,t|t drops from about 0.75 in 1980 to near 0.25 by 1991 before rising to almost 0.6 before the 2001

recession. Third, θ1,t|t falls from 0.5 to about −0.1 between 2001 and 2009 and stays there for the rest

of the sample. Fourth, confidence bands of θ1,t|t do not contain zero between the 1969–1970 recession

and the recent financial crisis, but do since the 2007–2009 recession. A similar narrative holds for θt|T ,

except it shows less quarter to quarter variation and a smaller peak in the mid-1990s.

23Only Nason and Smith (2014) and Mertens (2015) estimate models conditional on πt and πSPFt,t+h, h=1, 2, . . . , 5.
24Clark and Davig estimate a VAR with SV on professional inflation forecasts of various horizons, CPI inflation,

a real activity variable, and the fed funds rate from 1981Q 3 to 2008Q 2.

22



Plots of λt|t and λt|T display a low frequency swing from more frequent to less frequent updating

around the late 1980s and early 1990s in figure 10. The average SPF inflation respondent is estimated

to update frequently to news about Etπt+h from the 1969Q 4 to the end of the 1981–1982 recession

because the bottom panel of figure 10 shows λt|T ≈ 0.3 during this period. Also, confidence bands run

from about 0.15 to around 0.5 during this period, which is evidence λt|T ≠ 0. From 1983Q 1 to 1995,

λt|T rises from close to 0.4 to about 0.7 before beginning to decline to 0.6 by the end of the sample.

Although confidence bands are wider for λt|T during the second half of the sample, these never cover

zero while ranging from about 0.4 to more than 0.8 by 2014Q 2. The top panel of figure 10 tells a

similar story, but in the first several years of the sample λt|t varies between 0.4 and 0.6. This signals

λt|t is more volatile early in the sample than from 1975 to the end of the sample.

Our estimates of λt|t and λt|T show the frequency of SI updating by the average SPF respondent

has shifted during the last 45 years. The evidence indicates the average SPF respondent never relies

exclusively on RE forecasts of inflation when forming πSPFt,t+h. These results are in line with Coibion

and Gorodnichenko (2015). However, λt|t and λt|T are estimated within the SI law of motion plus

SW-UC-SV-TVP-AR(1) model rather than inferred from reduced form predictive regressions.

We conclude this section by summarizing several of our results in figure 11. Figure 11 plots the

same information found in figures 9 and 10. This information is the λt|T s estimated by the SI law

of motion plus SW-UC-SV-AR(1) and SI law of motion plus SW-UC-SV-TVP-AR(1) models along with the

associated measures of persistence in εt . The latter (former) model’s estimates of λt|T are displayed as

a solid red (dotted black) plot. The absolute values of the posterior means of θ1 and θ1,t|T are found

in figure 11 as solid green and dotted blue lines, respectively.

Figure 11 explains the preferences the data have for the SI-λt law of motion plus SW-UC-SV-TVP-

AR(1) model over the SI-λt law of motion plus SW-UC-SV-AR(1) model. One reason is the former model

lacks time-varying persistence in εt . This model yields an estimate of
∣∣θ1

∣∣ ≈ 0.1, which leaves εt with

no persistence and in effect ties its movements to shocks to its SV. Thus, the SI-λt law of motion plus

SW-UC-SV-AR(1) model attributes transitory fluctuations in πSPFt,t+h to SV in εt . However, changes in λt

shift the transition matrix of the system of state equations (9.1) creating fluctuations in Ft+1xt that in

turn generate movements in πSPFt+h through the observation equations (9.2). In contrast, the SI law of

motion plus SW-UC-SV-TVP-AR(1) model alters the transition matrix of the state equation system (15.1)

by changes in θ1,t and λt . Since figure 11 shows the dotted black line is always greater than the solid red

line, the SI-λt law-of-motion plus SW-UC-SV-AR(1) model estimates less frequent updating compared

with the SI-λt law-of-motion plus SW-UC-SV-TVP-AR(1) model. This indicates time-varying persistence
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in εt lessens the average SPF participant’s dependence on changing beliefs about the dynamics of πt

that are embedded in λt to generate fluctuations in πSPFt,t+h using the observation equations (15.2).

The other reason is the SI law of motion plus SW-UC-SV-TVP-AR(1) model estimates meaningful

statistical and economic comovement in θ1,t and λt . Figure 11 plots the smoothed estimates of
∣∣θ1,t

∣∣
and λt produced by this model with the solid red and green lines. There is negative comovement in

these estimates for most of the sample, which indicates time-varying SI updating is more frequent

when εt exhibits more time-varying persistence. An implication is there are persistent movements in

εt that play a large role in generating fluctuations in πt . Observing these movements leads the average

SPF participant to anticipate transitory shocks are important for movements in Etπt . These beliefs

are consistent with the average SPF participant updating more frequently in response to shocks to

the time-varying persistence of gap inflation that produce transitory fluctuations in the conditional

mean of inflation. Thus, time-varying inflation gap persistence mitigates the stickiness the average SPF

respondent needs to produce inflation predictions in the context of the SW-UC model.

5 Conclusions

This paper contributes to the literature that evaluates the dynamics of realized inflation and SPF in-

flation predictions. We combine the Stock and Watson (2007) unobserved-components (SW-UC) model

with the Mankiw and Reis (2002) sticky information (SI) law of motion. The SW-UC model with stochas-

tic volatility is extended to include time-varying inflation gap persistence while we endow the SI law

of motion with a time-varying updating parameter. The joint SW-UC model and SI law of motion yield

different predictions of trend inflation. A source of the different trend inflation predictions is the

SW-UC model and SI law of motion rely on different time-varying rates to discount the histories which

generate these forecasts.

We employ this identifying information to estimate the joint dynamics of real time realized in-

flation and average SPF inflation predictions using different combinations of the SW-UC model and SI

law of motion. A particle filter algorithm generates estimates of these joint models. Comparing the

estimated likelihoods of these models indicate the data prefer models with time-varying persistence in

gap inflation. This persistence lowers the estimated time-varying stickiness of the average SPF inflation

prediction. Less sticky average SPF inflation predictions are updated more often given new information

about the conditional mean of inflation, which is provided by the SW-UC model with stochastic volatility

and time varying inflation gap persistence. This information consists of shocks to these elements of
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the SW-UC model. On a quarterly sample from 1969Q 1 to 2014Q 2, our estimates show less frequent SI

updating occurs at the same time stochastic volatility and inflation gap persistence are declining. The

drop in the frequency of SI updating is observed as realized inflation begins to fall in the mid 1980s.

Thus, time-variation in SI updating occurs less frequently at the same moment in time the average SPF

participant believes there is less potential for a permanent or persistent shift in the inflation regime.

Results presented in this paper fit into an emerging literature represented by Krane (2011), Nason

and Smith (2014), and Mertens (2015). This literature finds professional forecasters are more sensitive

to permanent shocks than to transitory shocks when revising their predictions of inflation and other

aggregate time series. We hope this paper stimulates more research into the ways in which professional

forecasters and other economic agents process information to form beliefs and predictions about future

outcomes and events.

References

Andrieu, C., A. Doucet, R. Holenstein (2010). Particle Markov chain Monte Carlo methods. Journal of the
Royal Statistical Society, Series B 72, 269–342.

Ang, A., G. Bekaert, M. Wei (2007). Do macro variables, asset markets, or surveys forecast inflation
better? Journal of Monetary Economics 54, 1163–1212.

Chen, R., J.S. Liu (2000). Mixture Kalman filters. Journal of the Royal Statistical Society, Series B 62,
493–508.

Clark, T.E., T. Davig (2011). Decomposing the declining volatility of long-term inflation expectations.
Journal of Economic Dynamics and Control 35, 981–999.

Cogley, T., G. Primiceri, T.J. Sargent (2010). Inflation-gap persistence in the US. American Economic
Journal: Macroeconomics 2, 43–69.

Cogley, T., T.J. Sargent (2015). Measuring price-pevel uncertainty and instability in the U.S., 1850–2012.
Review of Economics and Statistics forthcoming.

Cogley, T., T.J. Sargent (2008). Anticipated utility and rational expectations as approximations of
Bayesian decision making. International Economic Review 49, 185–221.

Cogley, T., T.J. Sargent (2005). Drifts and volatilities: monetary policies and outcomes in the post WWII
US. Review of Economic Dynamics 8, 262–305.

Cogley, T., A. Sbordone (2008). Trend inflation, indexation, and inflation persistence in the new Keyne-
sian Phillips curve inflation-gap persistence in the US. American Economic Review 98, 2101–2126.

Coibion, O., Y. Gorodnichenko (2015). Information rigidity and the expectations formation process: A
simple framework and new facts. American Economic Review, forthcoming.

Coibion, O., Y. Gorodnichenko (2012) What can survey forecasts tell us about informational rigidities?
Journal of Political Economy 120, 116–159.

Creal, D. (2012). A survey of sequential Monte Carlo methods for economics and finance. Econometric
Reviews 31, 245–296.

25



Doucet, A., S. Godsill, C. Andrieu. (2000) On sequential Monte Carlo sampling methods for Bayesian
filtering. Statistics and Computing 10, 197–208.

Durbin, J., S.J. Koopman 2002. A simple and efficient simulation smoother for state space time series
analysis. Biometrika 89, 603–615.

Faust, J., J.H. Wright (2013). Forecasting inflation. In Elliot, G., A. Timmermann (eds.), Handbook of
Economic Forecasting, vol. 2, pp. 2–56. New York, NY: Elsevier.

Flury, T., N. Shephard (2011). Bayesian inference based only on simulated likelihood: Particle filter
analysis of dynamic economic models. Econometric Theory, 27, 933–956.

Godsill, S.J., A. Doucet, M. West 2004. Monte Carlo smoothing for nonlinear time series. Journal of the
American Statistical Association 99, 156–168.

Grassi, S., T. Proietti (2010). Has the volatility of U.S. inflation changed and how? Journal of Time Series
Econometrics 2:1; article 6.

Herbst, E., F. Schorfheide (2014). Bayesian inference for DSGE models. Manuscript. Board of Governors
of the Federal Reserve System, Washington, D.C.

Jain, M. (2013). Perceived inflation persistence. Working Paper 2013–43, Bank of Canada.

Kozicki, S., P.A. Tinsley (2012). Effective use of survey information in estimating the evolution of ex-
pected inflation. Journal of Money, Credit and Banking 44, 145–169.

Krane, S.D. (2011). Professional forecasters’ views of permanent and transitory shocks to GDP. American
Economic Journal: Macroeconomics 3, 184–211

Kreps, D.M. (1998). Anticipated utility and dynamic choice. In Frontiers of Research in Economic
Theory: The Nancy L. Schwartz Memorial Lectures, 1983-1997, Jacobs, D. P., E. Kalai, M. I.
Kamien (eds.), 242–274. Cambridge, MA: Cambridge University Press.

Leeper, E.M., T. Zha (2003). Modest policy interventions. Journal of Monetary Economics 50, 1673–1700.

Mankiw, N.G., R. Reis (2002). Sticky information versus sticky prices: A proposal to replace the New
Keynesian Phillips curve. Quarterly Journal of Economics 117, 1295–1328.

Mertens, E. (2015). Measuring the level and uncertainty of trend inflation. Manuscript. Board of Gover-
nors of the Federal Reserve System, Washington, D.C.

Meyer, L. (1996). Monetary policy objectives and strategy. Remarks given at the National Association
of Business Economists 38th Annual Meeting, Boston, Massachusetts (September 8). Available at
http://www.federalreserve.gov/boarddocs/speeches/1996/19960908.htm.

Morley, J. (1999). A note on constraining AR(2) parameters in estimation. Manuscript. Department of
Economics, University of New South Wales, Sydney, Australia.

Morley, J.C., C.R. Nelson, E. Zivot (2003). Why are the Beveridge-Nelson and unobserved-components
decompositions of GDP so different? Review of Economics and Statistics 85, 235–243.

Muth, J.F. (1960). Optimal properties of exponentially weighted forecasts. Journal of the American
Statistical Association 55, 299–306.

Nason, J.M. (2006). Instability in US inflation: 1967–2005. Federal Reserve Bank of Atlanta Quarterly
Review 91 (Q2) 39–59.

Nason, J.M., G.W. Smith (2014). Measuring the slowly evolving trend in US inflation with professional
forecasts. CAMA working paper 7/2014, Australian National University.

Nelson, C.R. (2008). The Beveridge-Nelson decomposition in retrospect and prospect. Journal of Econo-
metrics 146, 202–206.

26

http://www.federalreserve.gov/boarddocs/speeches/1996/19960908.htm


Orphanides, A., D. Wilcox (2002). The opportunistic approach to disinflation. International Finance 5,
47–71.

Prado, R., M. West (2010). Time Series: Modelling, Computation and Inference. Boca Raton, FL:
CRC Press, The Taylor Francis Group.

Schorfheide, F., D. Song, A. Yaron (2014). Identifying long-run risks: A Bayesian mixed-frequency ap-
proach. Working Paper 20303, NBER, Cambridge, MA.

Shephard, N. (2013). Martingale unobserved component models. Economics Series Working Papers 644,
Department of Economics, University of Oxford.

Sims, C.A. (2003). Implications of rational inattention. Journal of Monetary Economics 50, 665–690.

Stock, J.H., M.W. Watson (2007). Why has US inflation become harder to forecast? Journal of Money,
Credit and Banking 39(S1), 3–33.

Stock, J.H., M.W. Watson (2010). Modeling inflation after the crisis. In Macroeconomic Challenges:
The Decade Ahead, Kansas City, MO: Federal Reserve Bank of Kansas City.

Xu, X.C. (2013). A note on “A Note on constraining AR(2) parameters in estimation.” Manuscript. De-
partment of Economics, University of New South Wales, Sydney, Australia.

27



Table 1. Calibration of Exogenous Random Walk Process Et

Ψ = [
ση συ σζ,1 . . . σζ,H σφ,1 . . . σφ,k

]′

Ψ Source

a
)

Volatility of Innovations Stock and Watson (2007)
to τt ’s and εt ’s SVs.

lnς2
η,t+1 = lnς2

η,t + σηξη,t ση = 0.20

lnς2
υ,t+1 = lnς2

υ,t + συξυ,t συ = 0.20

b
)

Volatility of Innovation to λt , calibrated
TVP of SI Forecast Updating.

λt+1 = λt + σκκt σκ = 0.05

c
)

Volatility of Innovations calibrated
to SPF Measurement Errors.

ζt,t+h ∼ N
(
0, σ 2

ζ,h

)
, σζ,h = 1.00

h = 1, . . . , H, H = 5

d
)

Volatility of Innovations to calibrated
TVP-AR(k) slope coefficients
of the inflation gap, εt .

θj,t+1 = θj,t + σφ,jφj,t ,
j = 1, . . . , k

k = 1 σφ,1 = 0.05

k = 2 σφ,1 = 0.10
σφ,2 = 0.05

e
)

Fixed Coefficient AR(k) MCMC estimates
of the inflation gap, εt . of the SW-UC Model

k = 1 σφ,1 = 0.01

k = 2 σφ,1 = −0.16
σφ,2 = −0.28

The calibrated parameters listed in panels a)–c) are applied to all the estimated joint DGPs of the SW-UC
model and the SI prediction mechanism of the average SPF respondent. The volatilities of the TVP-AR
slope coefficients of εt listed in panel d) apply to the SW-UC model (2.1)–(2.5). The innovations ξη,t ,
ξυ,t , κt and φj,t are random variables that are assumed to have standard normal distributions, where
j = 1 or j = 1, 2. Panel e) applies only to the SW-UC model that has persistence in εt produced by a
fixed coefficient AR(1) or AR(2).
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Table 2 Marginal Log Likelihoods of Estimated Models

SI-λt Law of Motion plus L
(
Y1:T

∣∣∣Ψ)
SW-UC-SV-AR(1) −397.01
SW-UC-SV-AR(2) −406.66

SW-UC-SV-TVP-AR(1) −378.67
SW-UC-SV-TVP-AR(2) −387.71
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Figure 1: Filtered RE, τt|t, and SI, Ft|tτt, Trend Inflation, πSPFt,t+1,
and Realized Real Time Inflation, πt, 1968Q4 to 2014Q2
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The plots of filtered RE trend inflation, τt|t , and filtered SI trend inflation, Ft|tτt , are generated using the particle filter
estimates of the TVP-SI law of motion and the SW-UC-SV-TVP-AR(1) model. The average SPF inflation nowcast prediction
corresponds to πSPFt,t+1.



Figure 2: Filtered RE, τt|t, and SI, Ft|tτt, Trend Inflation, πSPFt,t+2,
and Realized Real Time Inflation, πt, 1968Q4 to 2014Q2
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See the notes to figure 1, but the 1-step ahead average SPF inflation prediction corresponds to πSPFt,t+2.



Figure 3: Filtered RE, τt|t, and SI, Ft|tτt, Trend Inflation, πSPFt,t+3,
and Realized Real Time Inflation, πt, 1968Q4 to 2014Q2
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See the notes to figure 1, but the 2-step ahead average SPF inflation prediction corresponds to πSPFt,t+3.



Figure 4: Filtered RE, τt|t, and SI, Ft|tτt, Trend Inflation, πSPFt,t+4,
and Realized Real Time Inflation, πt, 1968Q4 to 2014Q2
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See the notes to figure 1, but the 3-step ahead average SPF inflation prediction corresponds to πSPFt,t+4.



Figure 5: Filtered RE, τt|t, and SI, Ft|tτt, Trend Inflation, πSPFt,t+5,
and Realized Real Time Inflation, πt, 1968Q4 to 2014Q2
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See the notes to figure 1, but the 4-step ahead average SPF inflation prediction corresponds to πSPFt,t+5.



Figure 6: Filtered, εt|t, and Smoothed, εt|T , Gap Inflation
1968Q4 to 2014Q2
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The plots of filtered, εt|t , and smoothed, εt|T , inflation gaps are generated using the particle filter estimates of the TVP-SI
law of motion and SW-UC-SV-TVP-AR(1) model.



Figure 7: Filtered, ςη,t|t, and Smoothed, ςη,t|T ,
Trend Inflation SV, 1968Q4 to 2014Q2

Filtered = Blue and Smoothed = Red
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The plots of the filtered, ςη,t|t , and smoothed, ςη,t|T , SV of trend inflation are generated using the particle filter estimates
of the TVP-SI law of motion and SW-UC-SV-TVP-AR(1) model. The thick and thin blue (red) plots are the filtered (smoothed)

estimates and interquartile range coverage bands of ςη,t|t
(
ςη,t|T

)
, respectively.



Figure 8: Filtered, ςυ,t|t, and Smoothed, ςυ,t|T ,
Inflation Gap SV, 1968Q4 to 2014Q2

Filtered = Blue and Smoothed = Red
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The plots of the filtered, ςυ,t|t , and smoothed, ςυ,t|T , SV of gap inflation are generated using the particle filter estimates of
the TVP-SI law of motion and SW-UC-SV-TVP-AR(1) model. The thick and thin blue (red) plots are the filtered (smoothed)
estimates and interquartile range coverage bands of ςυ,t|t

(
ςυ,t|T

)
, respectively.



Figure 9: Filtered, θ1,t|t, and Smoothed, θ1,t|T ,
Time-Varying Inflation Gap Persistence, 1968Q4 to 2014Q2

1970 1975 1980 1985 1990 1995 2000 2005 2010
−0.5

−0.25

0

0.25

0.5

0.75

1

1970 1975 1980 1985 1990 1995 2000 2005 2010
−0.5

−0.25

0

0.25

0.5

0.75

1

The plots of the filtered, θ1,t|t , and smoothed, θ1,t|T , TVP-AR1 coefficient are generated using the particle filter estimates
of the TVP-SI law of motion and SW-UC-SV-TVP-AR(1) model. The thick and thin blue (red) plots are the filtered (smoothed)
estimates and interquartile range coverage bands of θ1,t|t

(
θ1,t|T

)
, respectively.



Figure 10: Filtered, λt|t, and Smoothed, λt|T ,
Time-Varying SI Updating, 1968Q4 to 2014Q2
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The plots of the filtered, λt|t , and smoothed, λt|T , TVP-AR1 coefficient are generated using the particle filter estimates of
the TVP-SI law of motion and SW-UC-SV-TVP-AR(1) model. The thick and thin blue (red) plots are the filtered (smoothed)
estimates and interquartile range coverage bands of λt|t

(
λt|T

)
, respectively.



Figure 11: Smoothed Estimates of λt|T ,
∣∣∣θ1

∣∣∣, and
∣∣∣θ1,t|T

∣∣∣,

1968Q4 to 2014Q2
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The absolute value of the fixed coefficient
∣∣∣θ1

∣∣∣ is the blue dotted line, which is the posterior mean of a MCMC simulator
applied to the SW-UC-SV-AR(1) model. This model combined with the TVP-SI law of motion produces λt|T , which is the black

dotted line plots. The solid green line is
∣∣∣θ1,t|T

∣∣∣, which equals the absolute values of the posterior means of the particle
draws of this TVP moving through the sample quarter by quarter. This TVP is estimated within the SW-UC-SV-TVP-AR(1)
model, which also is the source of the solid red plot of λt|T . Estimates of λt|T are the posterior mean of the particle draws.
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