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Review: introduction

• Ambitious goal: Global solution and estimation of HANK + ZLB models →
technical tour de force.

• HANK: Oh and Reis (2012), McKay and Reis (2016), Ravn and Sterk (2017), Challe
et al. (2017), Kaplan, Moll, and Violante (2018), Bilbiie (2020), Auclert, Rognlie, and
Straub (2024), Bilbiie (2024).

• ZLB: Benhabib, Schmitt-Grohé, and Uribe (2002), Eggertsson et al. (2003), McKay,
Nakamura, and Steinsson (2016), Michaillat and Saez (2021).

• Neural Networks: Duffy and McNelis (2001), L. Maliar, S. Maliar, and Winant (2021),
Azinovic, Gaegauf, and Scheidegger (2022), Fernández-Villaverde, Hurtado, and Nuno
(2023), Folini et al. (2024), V. Duarte, D. Duarte, and Silva (2024), Valaitis and Villa
(2024), Pascal (2024).

• Main contribution: the extended state vector to solve the “curse of the nested
loop” when structural estimation of HANK model. Similar approaches: Norets (2012),
Scheidegger and Bilionis (2019).
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Review: the “curse of the nested loop”

Estimation: standard approach

p∗ = argmax
p∈Ω

Likelihood(p,data)

with policies ≈ NN(s|θ).

#I. Minimization ("outside loop")

p_star = maximize(likelihood)

#II. Likelihood evaluation ("inside loop")

def likelihood(p, data):

"""Return the value of likelihood"""

#1. Solution step: solve the model, conditional on parameter p (and data)

# Stochastic gradient descent to find NN parameter theta*

for i in range(I):

theta += - l*Gradient_Loss(theta, p)

#2. Evaluation step: simulate the model conditional on theta*, calculate the likelihood

return likelihood_value

Algorithm: Pseudo-code for the standard estimation approach
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Review: the “curse of the nested loop”

Estimation: extended state vector approach
Calculate policies ≈ NN(s, p|θ).

# Solve model (SGD), using (s,p) as the state vector:

for i in range(I):

# random draws of parameter vector

p = random.rand()

# SGD step:

theta += - l*Gradient_Loss(theta, p)

Algorithm: Pseudo-code for the extended state vector approach

Output θ∗: policy functions for all parameter values. Estimation is then “easy”:

p∗ = argmax
p∈Ω

Likelihood(p,NN(s, p|θ∗),data)

Extra step. Approximate the likelihood with the “NN particle filter”:

NNL(p, data|θL) ≈ Likelihood(p,NN(s, p|θ∗),data)
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Major comments: separation between solving and estimating models

Sampling strategy
Uniform sampling when “training” likelihood NNL(p,data|θL) (or policies ≈ NN(s, p|θ)).

Ideal sampling strategy

1 draw more in the direction of the maximizer p∗ ,

2 draw more where functions are “unknown”

Literature: surrogate model optimization
Algorithms that balance the explore-exploit trade-off. Sampling the most unknown
region and sampling in minimizing region:
Expected improvement (EI) criterion (Jones, Schonlau, and Welch, 1998), Stochastic RBF
(Rommel G Regis, 2011) Lower confidence-bound (LCB) strategy (Srinivas et al., 2012),
Dynamic coordinate search (DYCORS) (Rommel G. Regis and Shoemaker, 2013).
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Major comments: econometric results

• Linearized RANK ≈ Global HANK: “[...] heterogeneity and non-linearities do
not lead to substantial revision to the estimated value of those parameters.” (p. 29).

• “The match is somewhat unsatisfactory” (p. 31). Similar to Acharya et al. (2023).
RANK ⊆ HANK. Why worse fit?

• What about identification? Use of cross-sectional data to identify some parameters.
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Minor comments

Too many NNs?

1 NN for aggregate variable,

2 NN for deterministic steady-state,

3 NN for likelihood.

Compounding approximations. What happens to approximation errors?

• Show Euler equation errors, not just value of the loss.

Monte-Carlo integration

• Monte-Carlo integration (antithetic variates) to approximate expectation w.r.t. next

period’s innovation + L-2 norm → bias, because
(

1
N

∑N
i=1 xi)

2 biased estimator of
E(x)2.

• Use “all-in-one” operator (L. Maliar, S. Maliar, and Winant, 2021) or “bias-corrected
Monte Carlo” operator (Pascal, 2024).
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Minor comments

Extra noise
• Finite number of agents. Why not use a histogram (Young, 2010)?

Proofs of concept

• POC1: 3-equation NK model. Why log-linearization?

• POC2-3: correctly-centered truncated-Gaussian priors. How much Bayesian
updating?

• Comparison with other methods (time-accuracy trade-offs)?
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Conclusion

• Technically impressive. Key idea: pseudo-state vector, combined with neural
network(s).

• New questions now answerable.
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