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Introduction

Key advancements in integrating heterogeneity into dynamic GE models

Estimation of HA models is challenging

Estimation of parameters affecting the steady state (DSS) often unfeasible

Available methods rely on linearizing the aggregate dynamics of the models

Yet, nonlinear aggregate dynamics are crucial to explain recent macro data

ZLB, deep recessions, sudden inflation rise

New approach to estimate nonlinear HA models based on neural networks

⇒ Likelihood estimation of a nonlinear HANK model using US data

⇒ Estimation includes parameters affecting the steady state (DSS)
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The challenges of estimating HA models

Estimation requires many repetitions of two time-consuming steps

1. Solve the model for a given parameters combination

2. Evaluate an objective function (likelihood or a moment function)

This repetion is a major obstacle in estimating nonlinear HANK models.

Solving the models is too time consuming as they feature many states

Solving the DSS is also a computationally costly

Ex-ante unknown how many times you need to take these two steps
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Structural estimation with neural networks

Key steps to make estimation of nonlinear HANK models with NNs feasible

⇒ Parameters as pseudo-state variables of the policy functions to approximate,

⇒ NNs are trained to learn policy functions only once prior to estimation

⇒ Once trained, these NNs deliver quick and accurate solutions of the model
for different values of parameters, including those influencing the DSS

⇒ For likelihood estimation, we introduce the neural-network particle filter

⇒ To speed up likelihood evaluation

⇒ To mitigate computational inaccuracies of standard particle filters
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Estimation of a nonlinear (stylized) HANK model

The model has aggregate shocks and a ZLB constraint

Estimated using US aggregate data

The model matches some of the moments of the data fairly well

Parameter estimates echo those in estimated linearized RANK models

Idiosyncratic income risk is a key contributor to aggregate volatility

Higher idiosyncratic risk ⇒ more savings and lower interest rate

The risk of the ZLB increases and so does macro volatility

This mechanism explains 22% of GDP volatility

Deflationary bias – depending on the ZLB risk – is estimated to be 30%
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What is a neural network?

Hidden Layer

Output Layer

Hidden Layer

Input Layer

Consider a function Y = ψ(X ) to be approximated by a NN defined as

Y = ψNN(X |W ),

The NN combines mathematical functions performed at every neuron
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What is a neural network? (cont’d)

A single neuron assigns its inputs x1, x2, . . . xS some weights w1,w2, . . . ,wS

and computes their sum (adjusted by a bias w0) to return a single output ỹ

ỹ = h(w0 +
S∑

i=1

wixi ).

The activation function h(·) helps the NN to capture nonlinear dynamics

The vector W with all weights is optimized (trained) to minimize a loss fct

All the optimizing weights across individual neurons (W ) define a NN

The neural network training usually exploits graphics processing units
(GPUs) as they can process multiple computations simultaneously

e.g. PyTorch, Google Jax and TensorFlow

Kase, Melosi, Rottner Estimating HANK with Neural Networks November 28, 2024 8 / 21



Model solution



Model solution and pseudo-state variables

Solving the model amounts to approximate a set of policy functions:

ψt = ψ(St | Θ̃, Θ̄︸︷︷︸
Θ

)

Heterogeneity

Key step: We could treat parameters Θ̃ as pseudo-state variables

ψt = ψ(St , Θ̃|Θ̄)

⇒ No need to re-train the NN multiple times at different parameter values

A NN can be trained to approximate the policy functions:

ψt = ψNN(St , Θ̃|Θ̄;W )

Example
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Training of the neural network to solve the model

Define a loss function as the weighted sum of squared residual errors

ΦL =
K∑

k=1

αk [Fk(ψ(St , Θ̃|Θ̄))]2.

The NN is trained by minimizing the average loss over batches of size B

Φ̄L =
1

B

B∑
b=1

K∑
k=1

αk

[
Fk(ψ(St,b, Θ̃b|Θ̄))

]
2.

This optimization step is repeated thousands of times
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Why Does This Approach Work?

Approximate policy functions without conditioning on a parameter value

⇒ We only need to train the NNs once, prior to estimation

⇒ No need to re-train the NN multiple times at different parameter values

NNs are well-suited to dealing with high-dimensional problems (scalability)

We expand the dimensionality of the state vector by adding parameters

But the increase in computational burden remains manageable

Once the extended policy functions are approximated, the model’s solution
at any parameter values can be obtained in a fraction of seconds

⇒ Repetition of the solution and evaluation steps becomes manageable
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Structural estimation



The Neural-Network Particle Filter

Objective: evaluate the likelihood of the model More

For nonlinear models we can obtain the likelihood using the particle filter

This filter requires to track thousands of particles over multiple periods

Calculation is typically noisy and can be time-consuming

Some advantages of neural-network based particle filter

1. Single likelihood evaluation can be done almost instantly

2. Effectively smooths out noise from the particle filter
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Training the neural network particle filter

We obtain several thousand quasi-random parameters draws

We run the particle filter to obtain the likelihood value at each draw

We employ the trained NNs to approximate the policy functions and the DSS

The NN is trained to predict the likelihood evaluated at these draws

Loss function: the mean squared errors between the likelihood approximated
by the NN and computed by the particle filter

Minimize the average loss function over batches

With the trained NN particle filter, the likelihood can be rapidly evaluated

Overfitting
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Cutting through the noise of the particle filter
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Figure: Accuracy in likelihood evaluations: NN particle filter vs. standard particle
filter. The logorithm of the likelihood of the model as a function of the risk aversion
parameter σ. The value of the fixed parameters are set to the middle of their bounds.
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Proofs of Concept

1. Neural network based solution vs. analytical one for a simple RANK model

Solution based on our neural network with pseudo-state variables

⇒ Neural network solution coincides with true solution Results

2. Neural network based estimation vs. alternative one for a nonlinear model

Laboratory is a RANK model with a zero lower bound

⇒ The estimation results are very similar Model Estimation Results

3. Estimation of nonlinear HANK with simulated data

10 parameters, also ones affecting idiosyncratic risk, are included

⇒ Estimates are close to true-data generating process Results
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Estimation of a Nonlinear HANK model with the ZLB

A nonlinear HANK model with the ZLB constraint, price adjustment costs à
la Rotemberg, flexible wages, one asset, idiosyncratic shocks to households’
labor income, borrowing limit, and aggregate uncertainty: preference shocks,
shocks to TFP growth, and monetary policy The model

US time-series data from 1990:Q1 to 2019:Q4

GDP growth per capita, GDP deflator, and shadow interest rate

Measurement error ut follows a Gaussian distribution N (0,Σu)

The interactions between heterogeneity and aggregate nonlinearities allow
for the identification of idiosyncratic risk, σs
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Prior and Posterior Moments

Estimation

Par. Prior Neural Network

Type Mean Std
Lower Upper Posterior
Bound Bound Median 5% 95%

σs Trc.N 0.050 0.01 0.025 0.1 0.070 0.057 0.081
B Trc.N −0.5 0.025 −0.65 −0.35 −0.50 −0.54 −0.46

φ Trc.N 100 5 70 120 101 94 107
θΠ Trc.N 2.25 0.125 1.75 2.75 2.43 2.20 2.67
θY Trc.N 1.0 0.025 0.75 1.25 0.96 0.92 1.00
ρz Trc.N 0.4 0.025 0.2 0.6 0.43 0.39 0.47
ρmp Trc.N 0.9 0.005 0.85 0.95 0.905 0.897 0.913
σζ Trc.N 0.015 0.1% 0.01 0.02 0.011 0.012 0.013
σz Trc.N 0.4% 0.1% 0.3% 0.6% 0.47% 0.43% 0.53%
σmp Trc.N 0.06% 0.01% 0.05% 0.2% 0.15% 0.14% 0.16%

Calibrated Parameters Convergence Aggregate policies
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Interactions between nonlinearities and heterogeneity
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⇒ The estimated idiosyncratic risk affected by the volatility of the observables
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How good is what we got?

Standard deviations

Model Data

GDP growth 0.6947 0.5831
Inflation 1.1511 0.9045
Federal funds rate 2.561 2.7537

Autocorrelations

Model Data

GDP growth 0.1355 0.4050
Inflation 0.8146 0.5456
Federal funds rate 0.7219 0.9707

Avg. Gini coefficient

Model Data

Wealth distrib. 0.8793 0.8410
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Conclusions

Novel integrated neural-network based estimation procedure

Estimation of models with hundreds of state variables
(HA, many countries or sectors) and nonlinear constraints possible

Estimation of a HANK with individual and aggregate nonlinearities and risk

Interactions between nonlinearities, aggregate uncertainty, and heterogeneity

New techniques to solve and estimate the economic models of the future
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Example Codes

Code for the analytical example!
https://github.com/tseep/estimating-hank-nn

Or run the code directly in the cloud with Google Colab
https://colab.research.google.com/github/tseep/

estimating-hank-nn/blob/main/examples/colab_analytical.ipynb
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Model solution with neural networks

Objective: Solving a nonlinear DSGE model

State variables St , shocks νt and structural parameters Θ

Model’s dynamics summarized by a set of (nonlinear) transition equations

St = f (St−1, νt ; Θ) ,

where function f is generally unknown and needs to be obtained numerically

Heterogeneity: Approximate distributions with a finite number of agents

The state variables and the vector of shocks

St =

{{
Si
t

}L

i=1
, SA

t

}
and νt =

{{
ν it

}L

i=1
, νAt

}
.

Individual and aggregate policy functions

ψi
t = ψI (Si

t , St |Θ) and ψA
t = ψA(St |Θ).
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Incorporation of Heterogeneity

Heterogeneity usually assumes the existence of a continuum of agents

→ Distribution of states and shocks is infinite∫
Sit dΩ and

∫
ν it dΩ,

We approximate the distribution with a finite number of agents L{
Sit
}L
i=1

and
{
ν it
}L
i=1

.

The state variables and the vector of shocks

St =
{{

Sit
}L
i=1

,SAt
}

and νt =
{{
ν it
}L
i=1

, νAt

}
,

Individual and aggregate policy functions:

ψi
t = ψI (Sit ,St | Θ̄) and ψA

t = ψA(St | Θ̄).

Back
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Training of Neural Network and Loss Function
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Back
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Particle Filter

Observation equation connects the state variables with the observables Yt :

Yt = g(St |Θ̃) + ut ,

where g is a function and ut is a measurement error

Particle filter determines the likelihood

L
(
Y1:T ; Θ̃

)
= ΩPF

(
Y1:T ; Θ̃

)
Particle filter can be noisy and very time consuming for complex models

Using a filter to calculate the likelihood is still a bottleneck Back
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Nonlinear RANK Model with ZLB

Off-the-shelf New Keynesian model

Shocks to households’ preference to consumption

Price rigidities a la Rotemberg

Zero lower bound constraint on the nominal interest rate

Rt = max

[
1,R

(
Πt

Π

)θΠ
(
Yt

Y

)θY
]

We are interested in solving and estimating it in its nonlinear specification

Back
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Neural Network and Estimation

Training NN over 100000 iterations and batch size of 200 economies

We train the NN by drawing from the bounded parameter space

Stochastic solution from simulating the model after each draw

Observation equation with a sample size of 1000 periodsOutput GrowthInflation
Interest Rate

 =

400
(

Yt

Yt−1−1

)
400 (Πt − 1)
400 (Rt − 1)

+ ut

Estimation includes five structural parameters

Priors are truncated normal densities

15000 data points to train neural network based particle filter Back

Back
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Estimation Results

Estimation
Par. Cal. Neural Network Conventional Approach

True Posterior Posterior
Value Median 5% 95% Median 5% 95%

θΠ 2.0 2.02 1.87 2.17 2.06 1.94 2.20
θY 0.25 0.251 0.238 0.263 0.248 0.237 0.258
φ 1000 988.6 935.1 1036.7 973.7 911.2 1037.2
ρζ 0.8 0.686 0.669 0.701 0.691 0.670 0.710
σζ 0.02 0.020 0.020 0.021 0.020 0.019 0.020

Neural network based estimation works very well

Posterior median is very close to the true value

The bounds of neural network and conventional method are very similar

Neural network method is much faster and much more scalable!

Back
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Bayesian Estimation with NN: Posterior
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Calibration HANK Model

Calibrated Parameters

Parameters Value Parameters Value

β Discount factor 0.9975 γτ Tax progressivity 0.18
σ Relative risk aversion 1 D Government debt 1
η Inverse Frisch elasticity 0.72 Π Inflation target 1.00625
ϵ Price elasticity demand 11 ρs Persistence labor prod 0.9
χ Disutility labor 0.74 ρζ Persistence pref. shock 0.7
g Average growth rate 1.0033

Back
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Estimation - Step 1a: Model Solution and Neural Networks

NN training of model without aggregate risk (Aiyagari version)

0 2000 4000 6000 8000 10000
Iteration

10 7

10 5

10 3

10 1

101

M
ea

n 
sq

ua
re

d 
er

ro
r

Total loss during the training - Steady State Neural Network SS
NN

Back

Kase, Melosi, Rottner Estimating HANK with Neural Networks November 28, 2024 31 / 21



Estimation - Step 1b: Nonlinear Model Solution
NN training of the full nonlinear model version

Stepwise introduction of aggregate risk and the ZLB
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Overfitting

Overfitting occurs when NNs learn too much from the training sample

e.g. the noise generated by computational inaccuracies of the particle filter

⇒ Obtain a validation sample of randomly drawn parameters and likelihoods

We do not optimize the weights of the NN

We compute the loss function implied by the NN in the validation sample

We compare the loss in the validation sample to that in the training sample

Losses should be similar to dispel concerns of overfitting

Back
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Overfitting
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Figure: Training and validation convergence. The figure shows the total loss over the
the training sample (left) and over the validation sample (right). An epoch is completed
when all the points in the training or validation sample are utilized. The vertical axis is
expressed in a logarithmic scale.

Back

Kase, Melosi, Rottner Estimating HANK with Neural Networks November 28, 2024 34 / 21



Example: Linearized NK model

Small off-the-shelf linearized three equation NK model with TFP shock

Features a closed-form analytical solution

X̂t = EtX̂t+1 − σ−1
(
ϕΠΠ̂t + ϕY X̂t − EtΠ̂t+1 − R̂∗

t

)
Π̂t = κX̂t + βEtΠ̂t+1

R̂∗
t = ρAR̂

∗
t−1 + σ(ρA − 1)ωσAϵ

A
t

where X̂t is the output gap, Π̂ is inflation, R∗
t is the natural rate of interest,

and ϵAt is a TFP shock
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Example: Solution to Linearized NK Model

Solution to equation system depends on state variables and parameters

(
X̂t

Π̂t

)
= ψ

 R̂∗
t︸︷︷︸

State St

, β, σ, η, ϕ, θΠ, θY , ρA, σA︸ ︷︷ ︸
Parameters Θ̃

 .

The analytical solution is given as

X̂t =
1− βρA

(σ(1− ρA) + θY )(1− βρA) + κ(θΠ − ρA)
R̂∗
t ,

Π̂t =
κ

(σ(1− ρA) + θY )(1− βρA) + κ(θΠ − ρA)
R̂∗
t .
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Solving the NK Model with a Neural Network
1. Approximate the policy function with a deep neural network:

Two policy functions:(
X̂t

Π̂t

)
≈ ψNN( R̂

∗
t︸︷︷︸

St

, β, σ, η, ϕ, θΠ, θY , ρA, σA︸ ︷︷ ︸
Θ̃

)

2. Construct the loss function Φ̄L for optimization

Based on minimization of squared residual errors

errIS = X̂t −
(
EtX̂t+1 − σ−1

(
ϕΠΠ̂t + ϕY X̂t − EtΠ̂t+1 − R̂∗

t

))
errPC = Π̂t −

(
κX̂t + βEtΠ̂t+1

)
Loss function weighs the errors and averages over batch size B of 500

Φ̄L = α1
1

B

B∑
b=1

(errIS
b)2 + α2

1

B

B∑
b=1

(errPC
b)2

Back
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Solving the NK Model with a NN (cont’d)

3. Train the deep neural networks using stochastic optimization

- 500 000 iterations with a batch size of 1000

1. Draw parameters from a bounded parameter space

Parameters LB UB Parameters LB UB

β Discount factor 0.95 0.99 θΠ MP inflation 1.25 2.5
σ Relative risk aver. 1 3 θY MP output 0.0 0.5
η Inverse Frisch 0.25 2 ρA Persistence TFP 0.8 0.95
φ Price duration 0.5 0.9 σA Std. dev. TFP 0.02 0.1

2. Draw points from the state space via simulation

R̂∗
t = ρAR̂

∗
t−1 + σ(ρA − 1)ωσAϵ

A
t

3. Optimizer (ADAM) to choose the weights of the NN to minimize Φ̄L

Training

Back
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PoF 1: NN-approximation of policy functions

Back

Kase, Melosi, Rottner Estimating HANK with Neural Networks November 28, 2024 39 / 21



PoF 1: NN-approximation of policy functions (cont’d)

Back
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State and pseudo state variables and policy functions
Discretization of the number of agents: L = 100 agents

2 individual state variables:{
B̃ i
t−1

}L

i=1
and

{
s it
}L
i=1

4 aggregate state variables:

RN
t−1, ζt , zt , and mpt

One idiosyncratic shock and three aggregate shocks{ {
ϵs,it

}L

i=1
, ϵζt , ϵ

z
t , ϵ

m
t

}
10 pseudo state variables

Θ̃ = {σs ,B, φ, θΠ, θY , ρz , ρm, σζ , σz , σm}

10 calibrated parameters

Θ̄ = {β, η, σ, ā, χ, γτ ,Π,D, ρs , ρζ}

Back
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Loss functions to minimize for the training of NNs

The error associated with the Fisher-Burmeister function – smooth way to

represent the Kuhn-Tucker conditions: µi
t ≥ 0,

(
B̃ i
t − B

)
≥ 0, and

µi
t ×

(
B̃ i
t − B

)
= 0 – so as to enforce the borrowing limit at the individual

household level:

{
L1,i =

(
ΨFB

(
1− λ̄it , B̃

i
t − B

))2}L

i=1

, (1)

where λ̄it are the multipliers associated with the Euler equation of each household
i and L1,i is the squared error of agent i .
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Loss functions to minimize for the training of NNs (cont’d)

L2 =

([
φ

(
Πt

Π
− 1

)
Πt

Π

]
− (1− ϵ)− ϵMCt

−βφ 1

M

M∑
m=1

(exp(ζmt+1)

exp(ζt)

)(
C̃m
t+1

C̃t

)−σ (
Πm

t+1

Π
− 1

)
Πm

t+1

Π

Ỹm
t+1

Ỹt

2

,

(2)

L3 =

(
D − 1

L

L∑
i=1

B i
t

)2

, (3)

L4 =
1

M

M∑
m=1

(
D − 1

L

L∑
i=1

B i,m
t+1

)2

, (4)

L5 =
(
Ỹt − C̃t

)2
, (5)

L6 =
1

M

M∑
m=1

(
Ỹm
t+1 − C̃m

t+1

)2
. (6)
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PoF 3: Estimation of nonlinear HANK with simulated data

Estimation
Par. True Prior NN

Value Type Mean Std
Lower Upper Posterior
Bound Bound Median 5% 95%

Parameters affecting the DSS

100σs 5.00 Trc.N 5.00 1.000 2.50 10.0 4.28 3.17 5.31
B −0.50 Trc.N −0.50 0.010 −0.65 −0.35 −0.50 −0.54 −0.46

Other parameters

φ 100 Trc.N 100 5.000 70 120 100 92 108
θΠ 2.25 Trc.N 2.25 0.125 1.75 2.75 2.40 2.25 2.55
θY 1.00 Trc.N 1.00 0.025 0.75 1.25 1.01 0.97 1.05
ρz 0.40 Trc.N 0.40 0.025 0.20 0.60 0.40 0.37 0.45
ρm 0.90 Trc.N 0.90 0.005 0.85 0.95 0.90 0.89 0.91

100σζ 1.50 Trc.N 1.50 0.100 1.00 2.00 1.45 1.34 1.57
100σz 0.40 Trc.N 0.40 0.100 0.30 0.60 0.36 0.32 0.40
100σm 0.06 Trc.N 0.06 0.010 0.05 0.20 0.06 0.05 0.07

Back
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Estimation of Nonlinear HANK with Neural Networks
HANK with individual and aggregate nonlinearities

Households face idiosyncratic income risk s it and a borrowing limit B

E0

∑∞

t=0
βt exp(ζt)

[(
1

1− σ

)(
Ct

At

)1−σ

− χ

(
1

1 + η

)
(H i

t)
1+η

]

s.t. C i
t + B i

t = τt

(
Wt

At
exp(s it)H

i
t

)1−γτ

+
Rt−1

Πt
B i

t−1 + Divt exp(s
i
t)

s.t. B i
t ≥ B

where idiosyncratic risk follows an AR(1) process: s it = ρss
i
t−1 + σsϵ

s,i
t

Aggregate shocks: preference ζ, growth rate zt , and monetary policy mpt

Monopolistically competitive firms and Rotemberg pricing

Monetary policy is constrained by the zero lower bound

Rt = max

[
1, R

(
Πt

Π

)θΠ
(

Yt

AtY

)θY

exp(mpt)

]
Back
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Estimation of Nonlinear HANK with Neural Networks
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Estimation - Convergence
NN training of the full nonlinear model version

Stepwise introduction of aggregate risk and the ZLB
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Figure: Convergence of the NN solution for the HANK model. The figure shows the
dynamics of the mean squared error during the training of the extended individual and
aggregate policy functions. The shaded areas indicate the periods in which we introduce
aggregate risk and the ZLB. The vertical axis has a logarithmic scale.

Back
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Estimation: Aggregate Policy Functions

Policy functions for output and inflation for varying preference shock

Zero lower bound creates nonlinearity

Degree of nonlinearity depends on degree of idiosyncratic risk
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