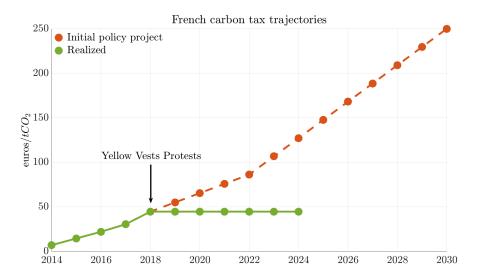

Geography versus Income: The Heterogeneous Effects of Carbon Taxation

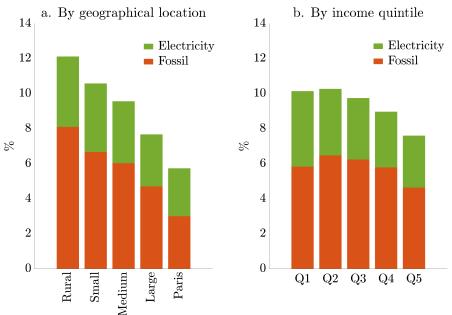
Charles Labrousse (Insee/PSE) & Yann Perdereau (PSE)

November 25, 2024

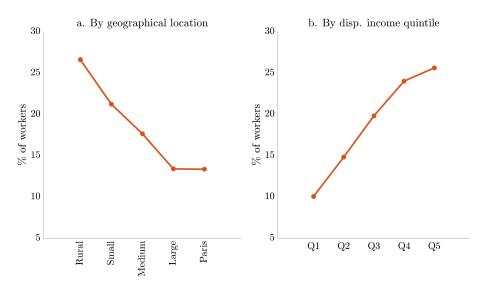

Motivation: social acceptability

Motivation: social acceptability

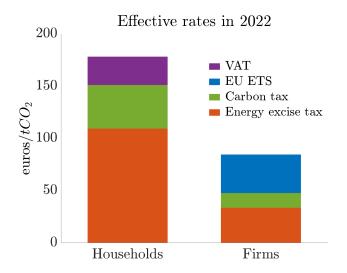
Motivation: social acceptability


 ${\small \textcircled{0}}$ Energy is a final good for HHs and an intermediate good for firms

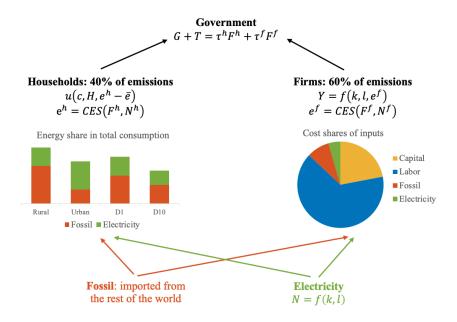
- Energy is a final good for HHs and an intermediate good for firms
- Geography matters:
 - Energy share depends on income but also on geographical location


- Energy is a final good for HHs and an intermediate good for firms
- Geography matters:
 - Energy share depends on income but also on geographical location
 - Workers in different areas work in sectors with different intensity

- Energy is a final good for HHs and an intermediate good for firms
- Geography matters:
 - Energy share depends on income but also on geographical location
 - Workers in different areas work in sectors with different intensity
- Solution care additional revenue for the government


Energy share in total consumption, France

Share of workers in emission intensive sectors


Effective carbon tax rates for households and firms

- Taxing households' energy consumption is regressive, while taxing firms' energy consumption is progressive
- **②** Geography is more relevant than income to assess welfare losses
- Optimal rebating policy should target poor and rural households

Model

Stylized representation of the model

Households with location choice (k)

- Households choose living areas (k), consumption of c, e^h and H
- **2** There are 5 living areas (k) associated with
 - energy requirement $\bar{e}(k)$
 - fossil share $\gamma_h(k)$
 - wage w(k)
 - housing price p^h(k)
 - productivity process z(k)

Household's problem:

$$\max_{\{\mathbf{a}_{t+1}, k_{t+1}, \mathbf{c}_t, \mathbf{e}_t^h, \mathbf{H}_t, \mathbf{F}_t^h, \mathbf{N}_t^h\}_{t=0}^+} \mathbb{E}_0 \sum_{t=0}^\infty \beta^t \left\{ \frac{u_t^{1-\theta} - 1}{1-\theta} \right\}$$

Household's problem:

$$\max_{\substack{\{\mathbf{a}_{t+1}, k_{t+1}, \mathbf{c}_t, \mathbf{e}_t^h, \mathbf{H}_t, \mathbf{F}_t^h, N_t^h\}_{t=0}^+}} \mathbb{E}_0 \sum_{t=0}^\infty \beta^t \left\{ \frac{u_t^{1-\theta} - 1}{1-\theta} \right\}$$

such that

Implicit utility function:

$$\Lambda_{C}^{\frac{1}{\sigma}}\left(\frac{c_{i,t}}{u_{i,t}^{\epsilon_{C}}}\right)^{\frac{\sigma-1}{\sigma}} + \Lambda_{E}^{\frac{1}{\sigma}}\left(\frac{e_{i,t}^{h} - \bar{e}(k_{i,t})}{u_{i,t}^{\epsilon_{E}}}\right)^{\frac{\sigma-1}{\sigma}} + \Lambda_{H}^{\frac{1}{\sigma}}\left(\frac{H_{i,t}}{u_{i,t}^{\epsilon_{H}}}\right)^{\frac{\sigma-1}{\sigma}} = 1$$

Household's problem:

$$\max_{\{a_{t+1},k_{t+1},c_t,e_t^h,H_t,F_t^h,N_t^h\}_{t=0}^+} \mathbb{E}_0 \sum_{t=0}^\infty \beta^t \left\{ \frac{u_t^{1-\theta}-1}{1-\theta} \right\}$$

- Implicit utility function
- **②** Energy is a CES bundle of fossil F^h and electricity N^h :

$$e_{i,t}^{h} = \left[(1 - \gamma_{h}(k))^{\frac{1}{\epsilon_{h}}} (N_{i,t}^{h})^{\frac{\epsilon_{h}-1}{\epsilon_{h}}} + \gamma_{h}(k)^{\frac{1}{\epsilon_{h}}} (F_{i,t}^{h})^{\frac{\epsilon_{h}-1}{\epsilon_{h}}} \right]^{\frac{\epsilon_{h}}{\epsilon_{h}-1}}$$

Household's problem:

$$\max_{\{a_{t+1}, k_{t+1}, c_t, e_t^h, H_t, F_t^h, N_t^h\}_{t=0}^{+\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ \frac{u_t^{1-\theta} - 1}{1-\theta} \right\}$$

- Implicit utility function
- **②** Energy is a CES bundle of fossil F^h and electricity N^h
- Budget constraint:

$$\underbrace{(1 + \tau^{VAT})\left[c + p^{N}N + (p^{F} + \tau^{h})F^{h}\right] + p^{h}(k)h}_{\text{Total consumption expenditures}} + \underbrace{a' - a}_{\text{Savings}}$$
$$= \underbrace{\Gamma(z(k)w(k)l)}_{\text{Net labor income}} + \underbrace{(1 - \tau^{k})ra}_{\text{Net capital income}} + \underbrace{T(k)}_{\text{Transfers}} - \underbrace{\kappa(k,k')}_{\text{Migration cost}}$$

Household's problem:

$$\max_{\{\mathbf{a}_{t+1}, k_{t+1}, \mathbf{c}_t, \mathbf{e}_t^h, \mathbf{H}_t, \mathbf{F}_t^h, \mathbf{N}_t^h\}_{t=0}^+} \mathbb{E}_0 \sum_{t=0}^\infty \beta^t \left\{ \frac{u_t^{1-\theta} - 1}{1-\theta} \right\}$$

- Implicit utility function
- **2** Energy is a CES bundle of fossil F^h and electricity N^h
- Budget constraint
- Earning process:

$$\ln z_{i,t+1} = (1 - \rho_z)\mu_z(k) + \rho_z \ln z_{i,t} + \epsilon_{i,t+1}$$
$$\epsilon_{i,t+1} \sim \mathcal{N}(0, \sigma_z(k))$$

Household's problem:

$$\max_{\substack{\{\mathbf{a}_{t+1}, k_{t+1}, \mathbf{c}_t, \mathbf{e}_t^h, \mathcal{H}_t, \mathcal{F}_t^h, N_t^h\}_{t=0}^+}} \mathbb{E}_0 \sum_{t=0}^\infty \beta^t \left\{ \frac{u_t^{1-\theta} - 1}{1-\theta} \right\}$$

- Implicit utility function
- **②** Energy is a CES bundle of fossil F^h and electricity N^h
- Budget constraint
- Earning process
- Sorrowing constraint:

$$a_{i,t+1} \geq \underline{a}$$

Final good y: in each region k, a firm produces consumption goods using capital, labor and energy

$$\max_{\{y,K^{y},l^{y},F^{y},N^{y}\}}\Pi^{y} = y - (r+\delta)K^{y} - w(k)l^{y}(k) - (p^{F} + \tau^{f})F^{y} - p^{N}N^{y}$$

such that

$$y = \left[\left(1 - \omega_y(k)\right)^{\frac{1}{\sigma_y}} \left((K^y)^{\alpha} (l^y)^{1-\alpha} \right)^{\frac{\sigma_y - 1}{\sigma_y}} + \omega_y(k)^{\frac{1}{\sigma_y}} (e^y)^{\frac{\sigma_y - 1}{\sigma_y}} \right]^{\frac{\sigma_y}{\sigma_y - 1}}$$

 $e^{y} = CES(N^{y}, F^{y})$

Firms – Energy sectors

Electricity sector N: produced using capital and fossil fuel

$$\max_{\{N,K^N,F^N\}} \Pi^N = p^N N - (r+\delta)K^N - (p^F + \tau^f)F^N$$

s.t. $N = (K^N)^{\eta} (F^N)^{1-\eta}$

Firms – Energy sectors

Electricity sector N: produced using capital and fossil fuel

$$\max_{\{N,\mathcal{K}^{N},\mathcal{F}^{N}\}} \Pi^{N} = p^{N}N - (r+\delta)\mathcal{K}^{N} - (p^{F} + \tau^{f})\mathcal{F}^{N}$$

s.t. $N = \left(\mathcal{K}^{N}\right)^{\eta} \left(\mathcal{F}^{N}\right)^{1-\eta}$

Fossil fuel sector F:

• imported from the rest of the world at an exogenous price p^F :

$$p^F = \bar{p}F^{\delta^F}$$

• the rest of the world uses the fossil fuel revenue $p^F(F^Y + F^N + F^h)$ to import goods and services X from the domestic economy:

$$X = p^F (F^Y + F^N + F^h)$$

Government

$$T_t^{\text{targeted}} + G_t + r_t \overline{d} = \int_0^1 (z_{i,t} w_t l - \Gamma(z_{i,t} w_t l)) di$$
$$+ \tau^{\text{VAT}} \int_0^1 (c_{i,t} + p_t^N N_{i,t}^h + p_t^F F_{i,t}^h) di$$
$$+ \tau^k r_t \int_0^1 a_{i,t} di$$
$$+ \tau_t^h (1 + \tau^{\text{VAT}}) \int_0^1 F_{i,t}^h di + \tau_t^f \left(F_t^y + F_t^N \right)$$

- Progressive labor income tax: $\Gamma(x) = \lambda x^{1-\tau}$
- Benchmark scenario: carbon tax revenue used in G
- We then allow for targeted transfers

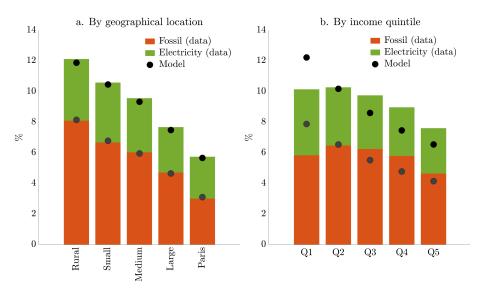
Market clearing conditions

Segmented labor markets clearing conditions:

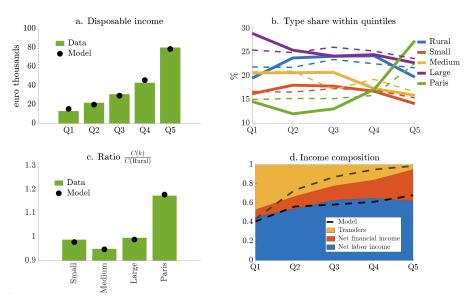
$$orall k$$
 , $l^y(k) = \int_{i=k} l_i \mathrm{d}i$

Segmented housing markets clearing conditions:

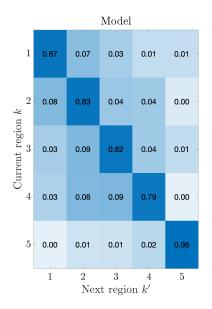
$$\forall k$$
, $H^{\text{supply}}(k) = H_k \left(p^h(k) \right)^{\delta^h} = \int_{i=k} h_i \mathrm{d}i$

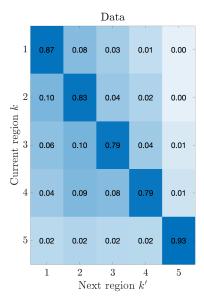

Asset market clearing:

$$\int_{i} a_{i} \mathrm{d}i = \bar{d} + \sum_{k} H^{\mathrm{supply}}(k) + \sum_{k} K^{y}(k) + K^{\Lambda}$$


- We use a global solution method in MATLAB
- **②** Steady state: quasi-Newton method with Broyden algorithm
 - 13 guesses: $\{r, G, p^N, \{p^H(k), w(k)\}_{k \in [\![1;5]\!]}\}$
 - Calibration: same method with 40 guesses
- Transition: non-linear quasi-newton method, fake-news algorithm from Auclert et al. (2021)

Calibration: taking the model to the data

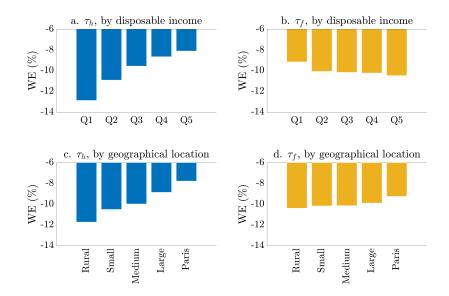

Energy share in total consumption



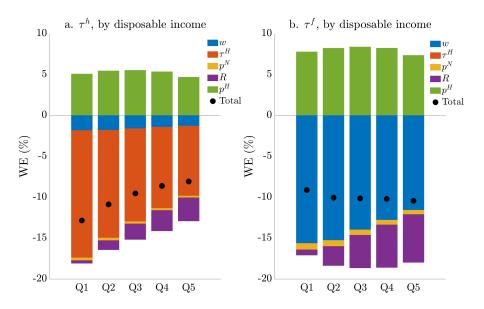
Calibration of heterogeneity

Migration matrix: $\kappa(k, k')$

Table: Empirical targets vs Model results


	Model	Target	Parameter	Value	Sources & notes	
a/GDP	402%	400%	β	0.94	Piketty and Zucman (2014)	
F_N/F	1%	1%	η	0.9813	Insee – EAE survey	
<i>wl</i> /GDP	65%	65%	α	0.28	Cette et al. (2019)	
Population	-	-	H(k)	_	Administrative data	
$F_{k,y}/F$	-	-	$\omega_y(k)$	_	PLF 2023 appendix	
N_y/E_y	33%	33%	γ_y	0.78	PLF 2023 appendix	
p ^F F/GDP	6%	6%	p^{F}	0.1	Government data	
G/GDP	29%	29%	λ	0.6	Auray et al. (2022)	
Elasticity of substitution $c-e_h$ σ			σ	0.28	Estimation of σ	
Elasticity of substitution KL - e_y			σ_y	0.32	Werf (2008)	
Elasticity of	substituti	on N-F	ϵ_h, ϵ_y	0.2	Authors' choice	

Quantitative results

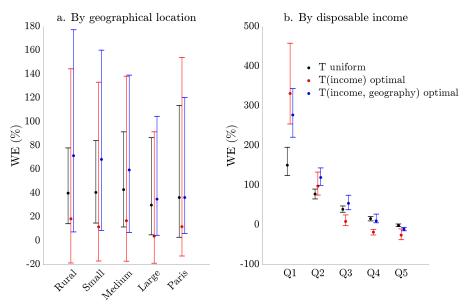

Experiment: permanent increase in carbon taxes

- Permanent change in carbon taxes
- **2** We compare τ_h and τ_f for the same aggregate welfare loss
- We compare rebating policies with a 20% emissions reduction target

τ_h is regressive, τ_f is progressive

τ_h is regressive, τ_f is progressive

Migration results



Change in density $(\%)$									
Q1	-0.20	-0.02	-0.02	0.08	0.18				
Q2	-0.14	-0.16	-0.01	0.12	0.15				
Q3	-0.13	0.03	-0.04	0.02	0.18				
Q4	-0.08	0.06	0.01	-0.04	0.00				
Q5	0.11	-0.04	0.03	0.02	-0.10				
Bural Strall Hedinth Large Paris									

The planner maximizes welfare, neutralizing redistribution motive:

$$\max_{\chi_{1},\chi_{2}} W^{\mathsf{Planner}} = \int \alpha_{i} V(a,k,z) \mathrm{d}i \text{ with } \alpha_{i} = \underbrace{\left(\frac{\partial V_{i}(a_{i},k,z)}{\partial a_{i}}\right)^{-1}}_{\mathsf{Negishi weights}}$$
s.t. $T_{i,t} = \left(\frac{(1 + \chi_{2} \times \bar{e}_{i,t})}{\mathrm{disposable income}_{i,t}}\right)^{\chi_{1}}$

How should we redistribute?

Conclusion

① τ_h is regressive when τ_f is progressive

Conclusion

- **(**) τ_h is regressive when τ_f is progressive
- Geography is more important than income

Conclusion

- **(**) τ_h is regressive when τ_f is progressive
- Geography is more important than income
- Optimal rebating policy targets poor and rural households

Thank you !

References I

- Auclert, Adrien et al. (2021). "Using the sequence-space Jacobian to solve and estimate heterogeneous-agent models". In: *Econometrica* 89.5, pp. 2375–2408 (cit. on p. 28).
- Auray, Stéphane et al. (2022). "Markups, Taxes, and Rising Inequality". In: *CREST Working Paper* (cit. on p. 33).
- Cette, Gilbert, Koehl, Lorraine, and Philippon, Thomas (2019). "Labor Shares in Some Advanced Economies". In: Working Paper # 727, Banque de France (cit. on p. 33).
- Piketty, Thomas and Zucman, Gabriel (2014). "Capital is Back: Wealth-Income Ratios in Rich Countries 1700–2010". In: *Quarterly Journal of Economics* 129.3, pp. 1255–1310 (cit. on p. 33).
- Werf, Edwin van der (2008). "Production functions for climate policy modeling: An empirical analysis". In: *Energy Economics* 30.6, pp. 2964–2979 (cit. on p. 33).