In a nutshell

- Has the expansion of central bank liquidity changed banks' incentives to hold liquid liabilities, making them more dependent from central bank liquidity and heightening banks' vulnerabilities to liquidity shocks?
- First paper to estimate this mechanism for the euro area.
- Banks increased demand for liquid deposits during periods of expanding excess liquidity, not reverting when excess liquidity decreased.
- The increased exposure to liquid claims is economically very mild and not at the expense of time deposits.

Disclaimer:

The paper contains the views of the author and not necessarily those of the European Central Bank, the Banco de Portugal or the Eurosystem.

Motivation

- The supply of liquidity by the central bank may have altered banks' incentives and the ex-post demand for liquidity (Acharya and Rajan, 2024).
- Banks issue demandable claims to fund reserves. Possible reasons: ALM strategies, higher cost of capital.
- When faced with a liquidity shock, banks hoard reserves (because of speculation, regulation or convenience yield of reserves) and the "effective" reserves available are not enough to cover the shock
- Evidence for the US points to the increase in demandable deposits with QE, not reverted during QT, increasing banks' vulnerabilities to liquidity shocks (Acharya et al., 2023).

Estimate the relationship between aggregate deposits and excess liquidity: $\Delta D_t = \alpha \Delta E L_t + \beta E L_{t-12} + \gamma slope_t + \epsilon_t$

where:

- D_t : Total (*TotDepo*), demand (*DemandDepo*) or time (*TimeDepo*) deposits
- EL_t : Excess liquidity of the Eurosystem
- $slope_t$: Spread between 10- and 1-year government bond yields of the euro area
- t: Month
- Data: monthly frequency, euro area aggregate, from Sep-2008 to Aug-23.
- Variables defined in logarithms and in \in amounts.

					r		
	$\Delta Ln(TotDepo)$		$\Delta Ln(DemandDepo)$		$\Delta Ln(T$		
$\Delta Ln(EL)$	0.023***	0.017***	0.009**	0.004	-0.012		
	(0.005)	(0.005)	(0.004)	(0.003)	(0.009)		
Slope	No	Yes	No	Yes	No		
Observations	180	180	180	180	180		
Note: Dependent variables in column. Δ variables defined as 12-month changes. β a							
reported. Standard errors in parentheses adjusted for autocorrelation in the residual							

p < 0.1, ** p < 0.05, *** p < 0.01

Main conclusions:

- Increase in EL associated with mild increase in demand deposits and no relationship with time deposits
- Weaker elasticity when controlling for the slope of the yield curve.
- From the estimation in levels (reflecting the 'mechanical' effect of liquidity injection): for 1€ extra of EL, 1 \in more in total deposits, around 30cent more in demand deposits.

Liquidity dependencies in the euro area

Carla Soares

European Central Bank, Banco de Portugal

Individual bank response to excess liquidity

Identification

- Instrumental variables approach to overcome endogeneity of bank reserves.
- Bank reserves would evolve in order to keep the bank's position in the liquidity network unchanged (Bartik-type of instrument):

$$Instrument_{it} = \ln\left(\frac{EL_t}{EL_{t-12}}\right) \frac{1}{12} \sum_{k=1}^{12} \frac{EL_{it-12-k}}{EL_{t-12-k}}$$
(2)

• This instrument is used in a 2SLS estimation: First stage:

 $\Delta \ln EL_{it} = \beta_1 Instrument_{it} + \beta_2 \ln EL_{it}$ Second stage:

$\Delta \ln Deposits_{it} = \alpha_1 \Delta \ln ELinstr_{it}$ -

where:

- EL_{it} : bank *i* excess reserves for month *t*
- X_{it} : bank level time varying controls (size measured by the log of total assets and balance sheet capital ratio)
- θ_i, δ_i : bank fixed effects to control for bank unobserved heterogeneity
- θ_{ct}, δ_{ct} : country-time fixed effects to proxy for deposit demand at the country level
- Data: Bank balance sheet data (IBSI) and reserves with the Eurosystem (MOPDB).
- Monthly frequency, from Sep-08 to Sep-23.

Overall results

• For the period 2008-2023, there is no evidence that banks intentionally increased demand deposits or decreased time deposits in response to excess liquidity.

Table: Results of estimation for demand deposits.

_

First stage results

		$\Delta Ln(EL_{it})$	$\Delta Ln(EL_{it})$	$\Delta Ln(EL_{it})$			
$instrument_{ii}$	t	35.35***	32.10***	24.09***			
		(7.688)	(7.486)	(2.165)			
Specification	OLS	IV	IV	IV			
Fixed effects	Bank	Bank	Bank	Country-time&bank			
N	116524	116508	113557	113557			
Note: Robust standard errors in parentheses, clustered at bank level in column (1), adjusted for							

autocorrelation in the residuals up to 12 months for columns (2) to (4). * p < 0.1, ** p < 0.05, *** p < 0.01

(1)

TimeDepo)-0.008 (0.010)Yes 180 and γ coefficients not als up to 12 months. *

$$x_{-12} + \beta_3 X_{it-12} + \theta_i + \theta_{ct} + \epsilon_{it} \qquad (3)$$

$$+ \alpha_3 X_{it-12} + \delta_i + \delta_{ct} + \varepsilon_{it} \tag{4}$$

Investigating the mechanisms

Different responses over the liquidity cycle?

- EL reduces?

Different responses to different sources of liquidity?

- is only 'permanent'.
- Implies *pari passu* adjustment in the instrumental variable.

Impact on deposit rates

- maturity over 2 years (i_{it}^{LT}) and overnight deposits (i_{it}^{ON})
- Estimate

$$i_{it}^{LT} - i_{it}^{ON} = \alpha_1 \Delta \ln ELin$$

- to changes in excess reserves.

- are in part a result of a decision of the bank.
- Liquidity regulation is stricter in the euro area.

• Do banks increase demand for liquid deposits when EL expands and revert it when

• Split estimation sample between periods of expanding EL and stable/decreasing EL. • Banks' expanded demand deposits in response to increasing excess reserves during periods of expanding EL (Jan-15 to Dec-17, May-20 to Dec-21).

• No reversal during periods of stable/decreasing EL.

• No evidence of ratching of demand deposits at the cost of time deposits.

• Sources of EL in the euro area can be 'temporary' or 'permanent', while in the US

• Split banks' excess reserves by source: borrowed reserves (refinancing operations) and non-borrowed reserves (asset purchases) (Altavilla et al., 2023).

• No statistically significant effect on demand deposits from either type of reserves.

• IV regression for the spread between the interest rate on deposits with agreed

• Two Bartik-type of instruments: for excess reserves and for deposits.

$nstr_{it} + \alpha_2 \Delta \ln Depo_{it} + \alpha_3 X_{it-12} + \delta_i + \delta_{ct} + \varepsilon_{it}$ (5)

• No significant evidence of substitution from time to demand deposits as a response

• Since 2022, deposit rates spreads suggest that banks are actively searching for more long-term deposits relative to overnight deposits as excess reserves fall.

Open questions

• Liquidity dependencies are milder in the euro area than in the US. • Different sources of liquidity could be a justification. However, borrowed reserves

References

• Acharya, V. and R. Rajan (2024) "Liquidity, Liquidity Everywhere, Not A Drop To Use - Why Flooding Banks With Central Bank Reserves May Not Expand Liquidity", Journal of Finance, Volume 79, Issue 5, 2943-2991.

• Acharya, V., R. Chauhan, R. Rajan and S. Steffen (2023) "Liquidity Dependence" and the Waxing and Waning of Central Bank Balance Sheets"

• Altavilla, C., M. Rostagno and J. Schumacher (2023) "Anchoring QT: Liquidity, credit and monetary policy implementation", CEPR Discussion Paper No. 18581.