Collateral Demand in Wholesale Funding Markets

Jamie Coen¹ Patrick Coen² Anne-Caroline Hüser³

¹Imperial College London

²Toulouse School of Economics

³Bank of England

ECB - Money Market Conference 2024

Views are solely those of the authors and not the Bank of England.

Repo Markets: How they work

Repurchase agreements (repo):

- ▶ Borrower sells asset at t & promises to buy it back at t + 1.
- Collateralized lending.
- ► Lender temporarily owns asset.

Repo serves two functions:

- 1. Funding demand: Acquiring funding cheaply.
 - \rightarrow Collateral valued only as insurance.
- Collateral demand: Acquiring assets temporarily.
 - \rightarrow Usage of collateral valuable, eg to short.

Repo Markets: Why they matter

Important:

- lacktriangle Key wholesale funding market o financial stability.
- $lackbox{ Necessary input to a shorting trade }
 ightarrow$ asset prices.

Economic interest:

Organization of market with two functions.

Question

Does collateral function complement funding function?

- What happens to eq'm funding absent collateral demand?
- Does this effect vary over time or in crises?
- Implications for regulation and policy?

What we do

Our focus: distribution of collateral demand across firms.

- 1. Transaction data of repo against UK gov bonds with firm ids.
 - → Heterogeneity in repo rates across firms.
- 2. Equilibrium model of repo.
 - → Effect of heterogeneous collateral demand across firms.
- 3. Structurally estimate model.
 - \rightarrow Infer & interrogate firm-time-asset collateral demand.
 - → Counterfactual: remove collateral demand.

What we find

Does collateral function complement liquidity function?

No! Volumes and gains to trade higher absent collateral demand.

- ▶ Joint distribution of funding and collateral needs across firms.
- Firms that need funding are also those that value collateral.

Empirical literature on repo

Duffie (1996); Gorton and Metrick (2012); Copeland, Martin & Walker (2014); Krishnamurthy, Nagel & Orlov (2014); Mancini, Ranaldo & Wrampelmeyer (2016); Boissel, Derrien, Ors & Thesmar (2017); D'Amico, Fan & Kitsul (2018); Ranaldo, Schaffner & Tsatsaronis (2019); Hüser, Lepore & Veraart (2021); Eisenschmidt, Ma & Zhang (2022); Ballensiefen, Ranaldo & Winterberg (2023); Huber (2023).

Contribution

- 1. Structural measurement of collateral demand.
- 2. Distribution in XS and TS.
- 3. Equilibrium effects.
- 4. Negative effect on repo market functioning.

Empirical literature on repo: Specialness

Duffie (1996); Gorton and Metrick (2012); Copeland, Martin & Walker (2014); Krishnamurthy, Nagel & Orlov (2014); Mancini, Ranaldo & Wrampelmeyer (2016); Boissel, Derrien, Ors & Thesmar (2017); D'Amico, Fan & Kitsul (2018); Ranaldo, Schaffner & Tsatsaronis (2019); Hüser, Lepore & Veraart (2021); Eisenschmidt, Ma & Zhang (2022); Ballensiefen, Ranaldo & Winterberg (2023); Huber (2023).

Contribution

- 1. Structural measurement of collateral demand.
- Distribution in XS and TS.
- 3. Equilibrium effects.
- 4. Negative effect on repo market functioning.

Empirical literature on repo: Structural estimation

Duffie (1996); Gorton and Metrick (2012); Copeland, Martin & Walker (2014); Krishnamurthy, Nagel & Orlov (2014); Mancini, Ranaldo & Wrampelmeyer (2016); Boissel, Derrien, Ors & Thesmar (2017); D'Amico, Fan & Kitsul (2018); Ranaldo, Schaffner & Tsatsaronis (2019); Hüser, Lepore & Veraart (2021); Eisenschmidt, Ma & Zhang (2022); Ballensiefen, Ranaldo & Winterberg (2023); Huber (2023).

Contribution

- 1. Structural measurement of collateral demand.
- Distribution in XS and TS.
- 3. Equilibrium effects.
- 4. Negative effect on repo market functioning.

Table of Contents

Data and facts

Model

Estimation

Results

Counterfactual

Conclusion

Empirical Facts

BoE transaction data on \approx universe of repo trading against UK government collateral (gilts) from 2017-23.

Facts on collateral demand:

- 1. Underlying asset matters for hedge funds, not MMFs.
- 2. Most repo rates below risk-free rate.
- 3. Hedge funds charge lower rates to lend.
- 4. Rates higher when collateral is interchangeable.

Background facts:

► Market power, exogenous networks, interdealer trade, etc.

Rate Variation: Hedge Fund vs MMF Lending

Table reports R^2 in regression of reporates on FE for firm type.

Fixed effects	Hedge fund	MMF	
Week-Maturity	0.50	0.31	
Week-Maturity-Borrower	0.56	0.98	
Week-Maturity-Lender	0.62	0.42	
Week-Maturity-Asset	0.94	0.73	

What about:

- 1. q?
- 2. confounding factors?
- 3. quantification?
- 4. counterfactuals?
- ightarrow model

Table of Contents

Data and facts

Model

Estimation

Results

Counterfactual

Conclusion

Model: Setup

Assets & Agents

- $ightharpoonup \mathcal{A}$ assets, indexed by a: exchange cash for collateral.
- ▶ Return to funding for agent $i \sim N(\nu_i, 1)$.
- ▶ Return to collateral for agent $i \sim N(\eta_i^a, \sigma)$.
- ▶ Mean-var preferences with risk aversion κ .

Trading structure

- $ightharpoonup N_d$ dealers and N_c customers on fixed network \mathbf{G}^a .
- Firm k has set \mathcal{N}_k^a as neighbours.
- No customer-customer links.
- 1. Competitive interdealer market indexed by *D*.
- 2. Dealer-customer trade, where dealers have market power.

Model: Setup

Trading

- $ightharpoonup q_{ii}^a$ borrowing by *i* from *j* against *a*.
- ▶ $Q_i^a = \sum_{j \in \mathcal{N}_i^a} q_{ij}^a$ total net borrowing by *i* against *a*.
- ▶ $Q_i = \sum_a Q_i^a$ total net borrowing by *i*.
- $ightharpoonup r_{ii}^a$ interest rate.
- $ightharpoonup \epsilon_{im}^a$ non-pecuniary, relationship-specific benefits.

Payoff to firm i

$$\underbrace{\nu_i Q_i - \frac{\kappa}{2} Q_i^2}_{\text{Funding}} \underbrace{-\sum_{a} \eta_i^a Q_i^a - \sum_{a} \frac{\kappa}{2} \sigma(Q_i^a)^2}_{\text{Collateral demand}} - \underbrace{\sum_{a} \sum_{m \in \mathcal{N}_i^a} q_{im}^a(r_{im}^a + \epsilon_{im}^a)}_{\text{Transaction terms}}$$

First order condition

Customer j, with respect to quantity q_{ij}^a :

$$-\nu_{j} + \kappa Q_{j} + \eta_{j}^{a} + \kappa \sigma Q_{j}^{a} + r_{ij}^{a} = 0$$
-j's MB from cash j's MB from collateral

Dealer i, with respect to quantity q_{ij}^a :

$$\nu_i - \kappa Q_i \qquad - \left(\eta_i^{\it a} + \kappa \sigma Q_i^{\it a}\right) \qquad - \kappa \sum_{\it l} q_{ij}^{\it l} - \kappa \sigma q_{ij}^{\it a} - \epsilon_{ij}^{\it a} - r_{ij}^{\it a} = 0$$
 i's MB from cash -i's MB from collateral Price effect

16

Equilibrium

Solution:

Linear FOCs where network link exists, given **G**.

Equilibrium quantity q_{ij}^a depends on:

- ▶ Relative counterparty characteristics: v_i, v_j and η_i^a, η_i^a .
- Network: counterparties' counterparties' characteristics, etc.

Effect of collateral demand on gains to trade $(\eta_i^a = 0, \forall i)$:

- Correlation between funding and collateral demand across i.
- ► Therefore an empirical question. Example

Table of Contents

Data and facts

Model

Estimation

Results

Counterfactual

Conclusion

Estimation: Setting

Task is to recover as flexibly as possible

- funding demand ν_{it} ;
- ightharpoonup collateral demand η_{it}^a ;
- ightharpoonup risk σ ; and
- ightharpoonup risk aversion κ ;

from

- ightharpoonup observed quantities q_{iit}^a ; and
- ightharpoonup observed rates r_{ijt}^a .

Estimation: Overview

Model: Dealer i FOC with respect to q_{ijt}^a :

$$r_{ijt}^{a} = \underbrace{\nu_{it} - \kappa Q_{it}}_{i'\text{s MB from cash } -i'\text{s MB from collateral}} \underbrace{-\kappa \sum_{l} q_{ijt}^{l} - \kappa \sigma q_{ijt}^{a}}_{\text{Price effect}} - \epsilon_{ijt}^{a}$$

Two step estimation:

- 1. Infer (κ, σ) from variation across j, within i t.
- 2. Given these estimates, infer (ν_{it}, η_{it}^a) from variation across a.

Challenges:

- Simultaneity: Gilt prices and trading patterns by firm as IV.
- ▶ Level identification: $\eta_{it}^a = 0$ when a is "general collateral".

Table of Contents

Data and facts

Model

Estimation

Results

Counterfactua

Conclusion

Results

Variation across firms:

- 1. Variation across type: banks and HF have high η .
- 2. Positive correlation across firms between η and ν .

Variation across time:

- 3. Funding demand tracks central bank rate.
- 4. Level and dispersion in collateral demand track volatility.

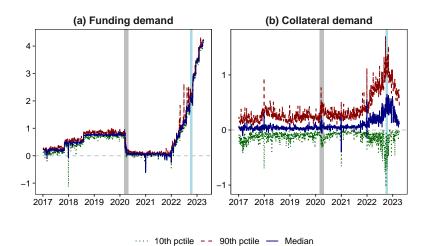
Implication:

Collateral demand bad for funding, particularly in stress?

Variation in Funding & Collateral Demand

Most variation across firms, not across assets:

Fixed Effects	Funding demand	Collateral demand	
Time t	0.96	0.07	
Firm i	0.14	0.49	
Asset a		0.05	
Firm-Asset ia		0.58	
Firm-Time it		0.85	
Asset-Time at		0.19	


Variation across firm types

	Funding demand $ u_{it}$ (1)	Collateral demand η_{it}^a (2)
Bank	0.68***	0.13***
	(0.007)	(0.0007)
Dealer	0.81***	0.23***
	(0.006)	(0.0004)
Fund	0.84***	0.07***
	(0.005)	(0.001)
Hedge Fund	0.70***	0.11***
	(0.004)	(0.0007)
MMF	0.61***	0.05***
	(0.01)	(0.003)
Other	0.77***	0.13***
	(800.0)	(0.002)
PFLDI	0.71***	-0.08***
	(0.006)	(0.001)
R^2	0.005	0.05
Observations	167,037	1,490,509

Correlation between funding and collateral demand

	Collateral demand η_{it}^a		
	(1)	(2)	(3)
Funding demand $ u_{it}$	0.20*** (0.0003)	0.95*** (0.001)	0.12*** (0.02)
R ² Observations	0.22 1,563,051	0.74 1,563,051	0.57 1,563,051
Day FEs Firm FEs		Yes	Yes

Variation over time

Results

Variation across firms:

- 1. Variation across type: banks and HF have high η .
- 2. Positive correlation across firms between η and ν .

Variation across time:

- 3. Funding demand tracks central bank rate.
- 4. Level and dispersion in collateral demand track volatility.

Implication:

Collateral demand bad for funding, particularly in stress?

Table of Contents

Data and facts

Model

Estimation

Results

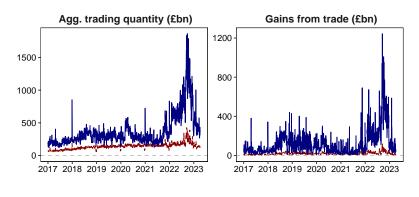
Counterfactual

Conclusion

Counterfactual: Removing Collateral Demand

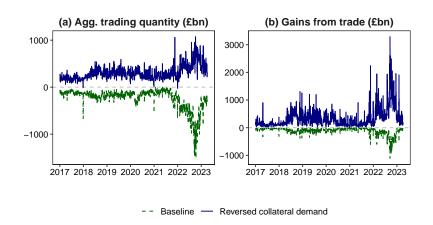
Removing collateral demand:

- ▶ Set $\eta_{it}^a = 0$ for all a, i, t.
- Collateral equally useful for everyone only as insurance.


Effect, relative to baseline:

Volumes and gains to trade higher, particularly in stress.

Extension, wrt correlation:


- Rearrange η_{it}^a across *i* to reverse correlation.
- ▶ Undertake same counterfactual removing collateral demand.
- ▶ Effect reversed: this is about correlation.

Counterfactual: Quantities & GTT

- - Collateral demand — No collateral demand

Role of Correlation

Table of Contents

Data and facts

Model

Estimation

Results

Counterfactua

Conclusion

Regulation

Problem: banks cannot simultaneously manage risk and funding.

- ▶ Banks need to be long on bonds to fund themselves...
- ... when they want to reduce inventory risk.

Implications for regulation/policy?

- Uncovered short-selling.
- Central bank repo accepting other collateral.
- Central bank collateral swap facilities.
- Monetary policy.

Conclusion

- Collateral demand is a key driver of repo outcomes.
- Effect depends on joint distribution with funding demand.
- Finding: dual repo functions do not always combine well.

Conclusion

- Collateral demand is a key driver of repo outcomes.
- Effect depends on joint distribution with funding demand.
- Finding: dual repo functions do not always combine well.

Thank you! patrick.coen@tse-fr.eu

Annexes

Background facts

Trade details:

- Mostly short maturity.
- Fully or over collateralized, no default.

Trade structure:

- ► Network sparse & broadly fixed. Details
- ► Dealers earn a spread. Dealer spreads
- D-D trade mostly on platforms, D-C trade OTC.

Firm types:

- MMFs uniquely lend, do not use collateral. Details
- Hedge funds borrow & lend, and may use to short.
- Different firms borrow against different gilts. Wallet variation

Net lending by sector

	Trade Share (%)	Daily net lending (%)	Daily net lending (£bn)
Dealer	66.1	-3.8	-4.6
Bank	11.7	-31.4	-7.5
Hedge Fund	10.3	-0.2	-0.4
Fund	4.2	62.5	5.2
MMF	2.9	97.4	6.2
PFLDI	2.8	18.9	0.9
Other	2.0	0.6	0.5

Additional facts

- 1. Fewer than 2% of counterparty pairs have non-zero trade in the whole sample.
- 2. Over 95% of transactions after January 2022 onwards were between traders who had traded together before January 2022.

 Back

Repo rate variation

Fixed effects	R-squared
Deal characteristics	
Week	0.37
Week-Asset	0.86
Week-Maturity	0.42
Week-Asset-Maturity	0.90
Trader characteristics	
Week-Borrower	0.51
Week-Lender	0.45
Week-Borrower-Lender	0.59

Rate variation

Dealer spreads

	(1)	Repo rate (% (2)) (3)
Dealer lending	0.155***	0.149***	0.092***
	(0.007)	(0.002)	(0.0006)
R^2 Observations	0.23	0.35	0.81
	1,003,270	1,003,270	1,003,270
Week FEs Week-Dealer FEs Week-Dealer-Asset FEs	Yes	Yes	Yes

Repo Rates & Collateralization Type

	Repo rate (%)			
	(1)	(2)	(3)	(4)
General Collateral	0.09***	0.09***	0.09***	0.10***
	(0.006)	(0.01)	(0.003)	(0.004)
R^2	0.30	0.20	0.55	0.43
Observations	6,095,617	6,095,617	6,095,617	6,095,617
Week FEs	Yes			
Borrower-Lender FEs		Yes		
Borrower-Week FEs			Yes	
Lender-Week FEs				Yes

Rates for hedge funds vs MMFs

	Repo rate (%)			
	(1)	(2)	(3)	(4)
Lender: Hedge fund	-0.06***	-0.08***	-0.003***	-0.002**
	(0.006)	(0.003)	(0.001)	(0.001)
R^2	0.38	0.58	0.94	0.97
Observations	371,649	371,649	371,649	371,649
Week FEs	Yes			
Borrower-Week FEs		Yes		
Borrower-Asset-Week FEs			Yes	
Asset-Mat-Borr-Week FEs				Yes

Model: Simplified example

One dealer i, one customer j, one asset:

- Equilibrium net borrowing by i:

$$q_{ij} = \frac{\Delta \nu - \Delta \eta}{3\kappa (1+\sigma)}$$

Equilibrium trading volume:

$$|q_{ij}| = \frac{|\Delta \nu - \Delta \eta|}{3\kappa(1+\sigma)}$$

Gains to trade:

$$GTT = \frac{2(\Delta \nu - \Delta \eta)^2}{9\kappa(1+\sigma)}$$

Model: Simplified example

One dealer i, one customer j, one asset:

- - $\rho \in [-1 \ 1]$: correlation btw liquidity and collateral demand.
 - ▶ $\bar{\eta} \in [0 \ 1]$: magnitude of collateral demand.
- **Effect** of collateral demand on GTT depends on correlation ρ :

$$\frac{dGTT}{d\bar{\eta}} \quad \begin{cases} >0, & \text{if } \rho < 0 \\ <0, & \text{otherwise} \end{cases}$$

► Effect of collateral demand therefore an empirical question.

Estimation: Step 1

Estimating equation:

$$r_{ijt}^{a} = \delta_{it}^{a} - \left[\kappa \sum_{l} q_{ijt}^{l} + \kappa \sigma q_{ijt}^{a}\right] \mathbb{1}_{ij} + \epsilon_{ijt}^{a}$$

where $\mathbb{1}_{ij} = 1$ if i has market power wrt j.

Identification:

- ightharpoonup Challenge: standard joint determination of q and r.
- ▶ Different j trade different a (exogenous "wallet").
- ▶ Change in price of gilt a exogenous to ϵ_{iit}^a .
- ► Shift-share IV: lag wallet shares, interact with price.

Estimation Details

Estimation: Step 2

Model:

$$\delta_{it}^{a} = \nu_{it} - \kappa Q_{it} - \eta_{it}^{a} - \kappa \sigma \sum_{m} q_{imt}^{a}$$

Second step estimation:

$$\hat{\delta}_{it}^{a} + \hat{\kappa}\hat{\sigma}\sum_{m}q_{imt}^{a} + \hat{\kappa}Q_{it} = \nu_{it} - \eta_{it}^{a}$$

- Decompose network-adjusted average interest rates for i.
- Level identification from following assumption:

$$\eta_{it}^{GC} = 0 \quad \forall i, t$$

Instruments: Details

Instruments:

$$egin{aligned} z_{1,jt} &= \sum_{a \in \omega_j} s^a_{jt} imes ext{price}^a_t \ z^a_{2,jt} &= z_{1,jt} - s^a_{jt} imes ext{price}^a_t \end{aligned}$$

First stage:

$$q_{ijt}^{a} = \alpha_{it}^{a} + \beta_{1}z_{1,jt} + \beta_{2}z_{2,jt}^{a} + e_{ijt}^{a}$$

$$\sum_{l} q_{ijt}^{l} = \alpha_{it}^{a} + \beta_{3}z_{1,jt} + \beta_{4}z_{2,jt}^{a} + e_{ijt}^{a}$$

Second stage:

$$r_{ijt}^{a} = \delta_{it}^{a} - \left[\kappa \sum_{l} q_{ijt}^{l} + \kappa \sigma q_{ijt}^{a}\right] \mathbb{1}_{ij} + \epsilon_{ijt}^{a}$$

Back

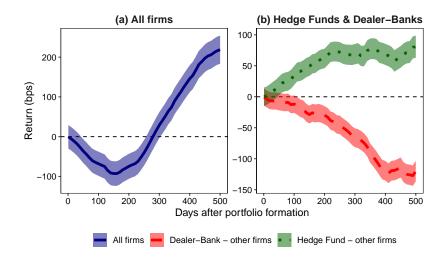
Estimates: risk & risk aversion

	Repo rate r_{ijt}^a (%)		
	OLS	2SLS	
	(1)	(2)	
$\sum_{l} q_{ijt}^{l}$	-0.01***	-0.02***	
	(0.0009)	(0.002)	
q_{ijt}^a	-0.12***	-0.18***	
9 -	(0.002)	(0.003)	
Wald (1st stage), $\sum_{l} q_{iit}^{l}$		6,377.2	
Wald (1st stage), $\sum_{l} q_{ijt}^{l}$ Wald (1st stage), q_{ijt}^{a}		2,170.8	
R^2	0.996	0.997	
Within R ²	0.027	0.037	
Observations	599,384	527,295	
Firm-asset-day FEs	Yes	Yes	
Firm-counterparty FEs	Yes	Yes	

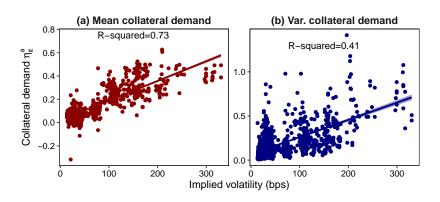
First Stage

	q_{ijt}^a OLS (1)	$\frac{\sum_{l} q_{ijt}^{l}}{2SLS}$ (2)
$z_{1,jt}$ $z_{2,jt}^a$	-0.0114*** (0.0002) 0.0116*** (0.0002)	-0.0072*** (0.0002) 0.0009*** (0.0002)
R ²	0.80069	0.86838
F-test	535.18	878.98
Observations	527,295	527,295
Firm-asset-week FEs	Yes	Yes
Firm-counterparty FEs	Yes	Yes

Collateral Demand & Asset Prices


Questions:

- Why do banks have collateral demand?
- Does collateral demand predict future bond prices?
- Is collateral demand about hedging or speculation?


Approach:

▶ Go short (long) on bonds with high (low) collateral demand.

3. Collateral Demand & Asset Prices

Volatility & Collateral Demand

Back

Sector heterogeneity

	Trade Share (%)	Daily net lending (%)	Daily net lending (£bn)
Dealer	66.1	-3.8	-4.6
Bank	11.7	-31.4	-7.5
Hedge Fund	10.3	-0.2	-0.4
Fund	4.2	62.5	5.2
MMF	2.9	97.4	6.2
PFLDI	2.8	18.9	0.9
Other	2.0	0.6	0.5

Rate variation

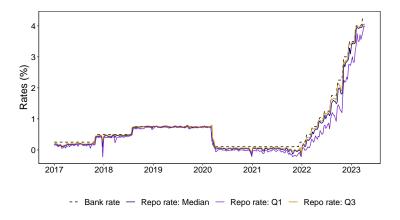
Fixed effects	R-squared
Deal characteristics	
Week	0.37
Week-Asset	0.86
Week-Maturity	0.42
Week-Asset-Maturity	0.90
Trader characteristics	
Week-Borrower	0.51
Week-Lender	0.45
Week-Borrower-Lender	0.59

Rate variation by firm type

Fixed effects	Hedge fund	MMF	
Week-Maturity	0.50	0.31	
Week-Maturity-Borrower	0.56	0.98	
Week-Maturity-Lender	0.62	0.42	
Week-Maturity-Asset	0.94	0.73	

Rates for general collateral

	Repo rate (%)			
	(1)	(2)	(3)	(4)
General Collateral	0.09***	0.09***	0.09***	0.10***
	(0.006)	(0.01)	(0.003)	(0.004)
R^2	0.30	0.20	0.55	0.43
Observations	6,095,617	6,095,617	6,095,617	6,095,617
Week FEs	Yes			
Borrower-Lender FEs		Yes		
Borrower-Week FEs			Yes	
Lender-Week FEs				Yes

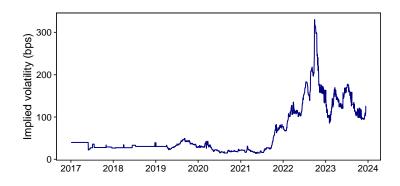

Rates for hedge funds vs MMFs

	Repo rate (%)			
	(1)	(2)	(3)	(4)
Lender: Hedge fund	-0.06***	-0.08***	-0.003***	-0.002**
	(0.006)	(0.003)	(0.001)	(0.001)
R^2	0.38	0.58	0.94	0.97
Observations	371,649	371,649	371,649	371,649
Week FEs	Yes			
Borrower-Week FEs		Yes		
Borrower-Asset-Week FEs			Yes	
Asset-Mat-Borr-Week FEs				Yes

Rates for hedge funds vs MMFs

	Repo rate (%)		
	(1)	(2)	(3)
Dealer lending	0.155*** (0.007)	0.149*** (0.002)	0.092*** (0.0006)
$\begin{array}{c} R^2 \\ \text{Observations} \end{array}$	0.23 1,003,270	0.35 1,003,270	0.81 1,003,270
Week FEs Week-Dealer FEs Week-Dealer-Asset FEs	Yes	Yes	Yes

Rates through time on dealer repo lending


Regression Results

	Repo rate r_{ijt}^a (%)	
	OLS	2SLS
	(1)	(2)
$\sum_{l} q_{ijt}^{l}$	-0.01***	-0.02***
	(0.0009)	(0.002)
q _{ijt}	-0.12***	-0.18***
9-	(0.002)	(0.003)
Wald (1st stage), $\sum_{l} q_{iit}^{l}$		6,377.2
Wald (1st stage), $\sum_{l} q_{ijt}^{l}$ Wald (1st stage), q_{ijt}^{a}		2,170.8
R^2	0.996	0.997
Within R ²	0.027	0.037
Observations	599,384	527,295
Firm-asset-day FEs	Yes	Yes
Firm-counterparty FEs	Yes	Yes

Regression Results: First Stage

	q_{ijt}^a OLS (1)	$\sum_{l} q_{ijt}^{l}$ 2SLS (2)
$z_{1,jt}$	-0.0114***	-0.0072***
	(0.0002)	(0.0002)
$z_{2,jt}^a$	0.0116^{***}	0.0009***
S	(0.0002)	(0.0002)
R^2	0.80069	0.86838
F-test	535.18	878.98
Observations	527,295	527,295
Firm-asset-week FEs	Yes	Yes
Firm-counterparty FEs	Yes	Yes

Implied volatility

