

Key insights

DG-M outreach on Al

Summary and key take-aways

DG-M carried out an outreach initiative to gather information on counterparties' involvement in innovation activities related to AI...

Invitations and meeting overview

- ➤ Fourteen invites sent to members of ECB Market Contact Groups
- ➤ Nine meetings held with BMCG, MMCG, and FXCG members from 11 April and 10 May 2024
- > Participants from sell-side, buy-side (asset managers), and operators of market data services

Meeting preparation and structure

- Six high-level Al-related questions shared with participants before meetings
- Questions aimed to assess Al use cases and maturity of innovation initiatives in the industry

Participant engagement and meeting dynamics

- Roles of participants varied; skilled Al experts at most meetings
- ➤ Meetings conducted in an **informal**, **semi-structured format**

...where the following key take-aways were identified regarding the industry's adoption and practical applications of Al

- Textual data is used for ML analyses to extract information from large volumes of documents (e.g., Bloomberg chats, analyst reports)
- GenAl opens new avenues, but applications are still at an exploratory stage

- Al supports systematic trading of hedge funds and alpha generation
- Yet, questions remain about the practical integration of Al applications with canonical algorithmic strategies

- Al is used for credit acceptance, pricing and personalisation
- Anticipated to automate Know Your Client applications and client communications

- Al expected to enhance productivity
- Reducing the time to finalise lending agreements by automatically filling in relevant data in loan applications

Key aspects of Al applications

Influence and perceptions of Al

Increased productivity

- ➤ Al is primarily seen as a **productivity enhancer**
- > Participants focus on **efficiency gains** in their workstreams
- ➤ While predictive ML has been largely adopted, applications of GenAl are mostly in exploratory phase

Growing number of applications

- > Process automation, **textual summaries** of various information sources
- > Chat bots for customer-facing activities or help desk
- Automated trading in ideation stage

Little revenue generation (yet)

- > Talk about significant potential of GenAl as a groundbreaking technological advancement
- > Concerns over unrealistic expectations leading to a potential bubble
- > Risk of investment in Al projects that may not yield immediate or tangible financial returns

Development and implementation

Sandbox preferred

- > Participants are welcoming safe sandbox environments when deploying LLMs to keep data internal
- Some even work on their **own proprietary LLMs** to reduce their reliance on providers

Dependence on third parties

- > Risk of vendor lock-in, with a few big tech companies dominating the industry
- Competing interests identified in relation to cost effectiveness on the customer side, while providers aim to boost product usage and fees

No common approach to governance and talent acquisition

- > Participants are in **different stages** regarding their adoption and integration of AI into their frameworks
- > There is **significant variation** in terms of HR and financial investments in Al across firms
- ➤ Most participants work with a **small central team** for governance and **decentralised** teams for implementation
- > Some created new organisational units, specifically recruiting Al talent

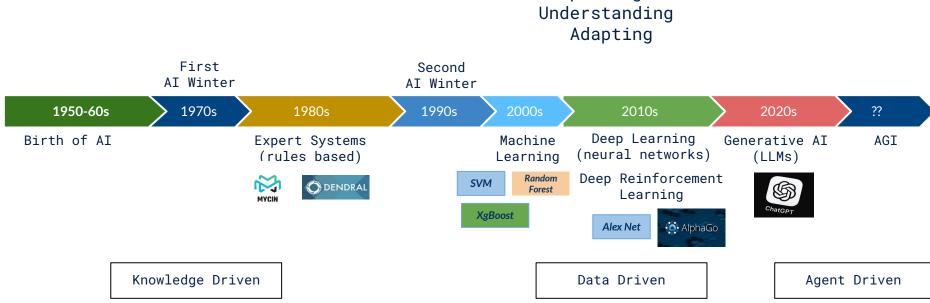
Deployment and security concerns

Deployment Concerns	Security Concerns
Complexity of integration with existing systems	Data protection and privacy risks
High initial costs and resource allocation	Vulnerabilities to cyber-attacks and breaches
Gen Al not interacting directly in markets yet	Human involvement to control certain Gen Al systems
Trust issues and fear of hallucinating generative Al	Ensuring compliance with regulatory requirements

Background

Questionnaire to counterparties

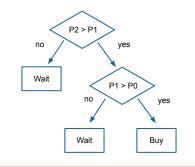
- 1. What are the big pain points you have identified as being use cases that Al can resolve?
- 2. Could you describe any of your (non-confidential) flagship AI initiatives or important proof of concepts?
- 3. What are the main benefits, costs, and risks with your current AI endeavours?
- 4. What is your team structure and different roles and skills in your Al/innovation teams (e.g., Hub and Spoke)? Central or decentral or hybrid?
- 5. How do you measure the impact/success of your Al initiatives?
- 6. How do you collect business requirements and how do you ensure continuous alignment between IT and business over the full life cycle of an innovation project?



Artificial Intelligence and Technological Innovation in FX Markets

Prepared for the ECB FX Contact Group November 2024

"The Science and Engineering of Making Intelligent Machines" (McCarthy, 1955)


Learning Reasoning Interpreting Understandin Adapting

Expert Systems (1970s-80s)

Rules given by human experts

General purpose within domain

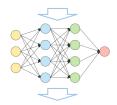
Machine Learning (1990s-2000s)

"Rules" are learnt from data examples

Good at solving very specific tasks

$$\begin{split} &R(T\text{-}2)\text{, Imbalance (T-2), Order Flow (T-2)} \rightarrow Trend \ (T\text{-}1)\\ &R(T\text{-}1)\text{, Imbalance (T-1), Order Flow (T-1)} \rightarrow Trend \ (T) \end{split}$$

Decision Tree, Random Forest, SVM...

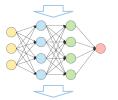

R(T), Imbalance (T), Order Flow (T) \rightarrow ?

Deep Learning (2010s)

ML + Deep Neural Networks (DNN)

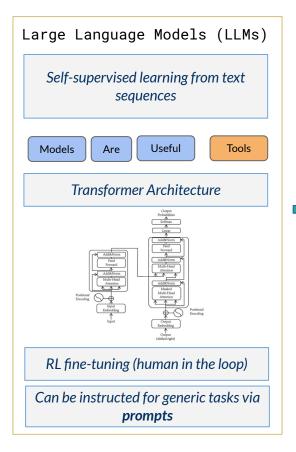
ML in steroids

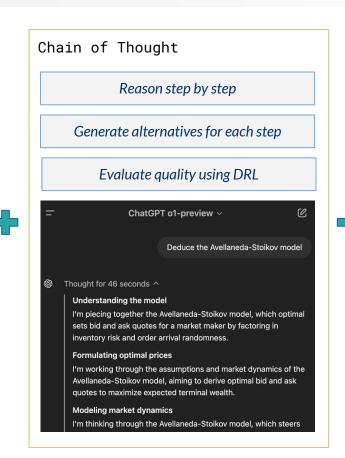
R(T-2), Imbalance (T-2), Order Flow (T-2) \rightarrow Trend (T-1) R(T-1), Imbalance (T-1), Order Flow (T-1) \rightarrow Trend (T)

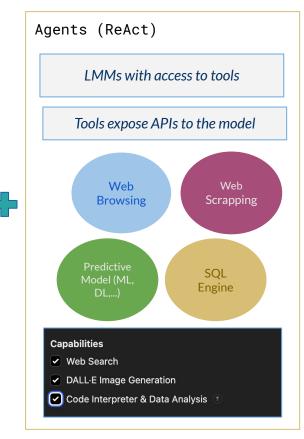

R(T), Imbalance (T), Order Flow (T) \rightarrow ?

Deep Reinforcement Learning (2010s)

RL: learn to evaluate the best policy (action)

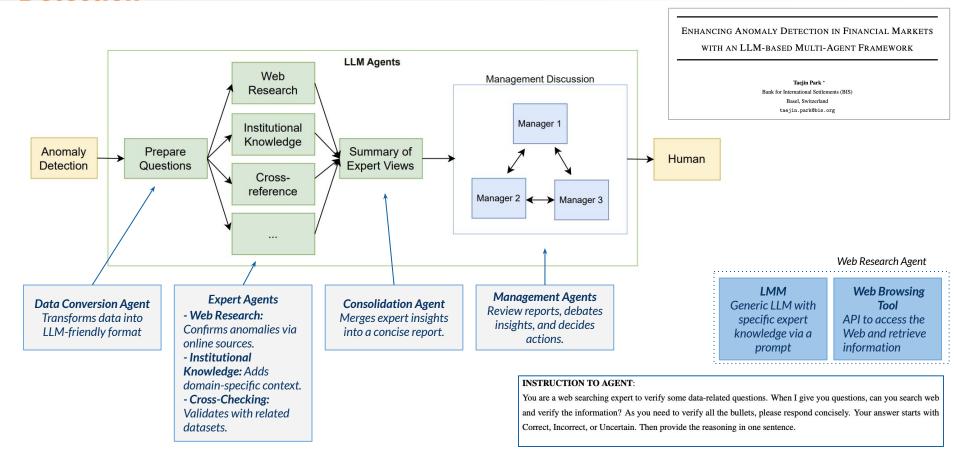

RL + DNN = DRL

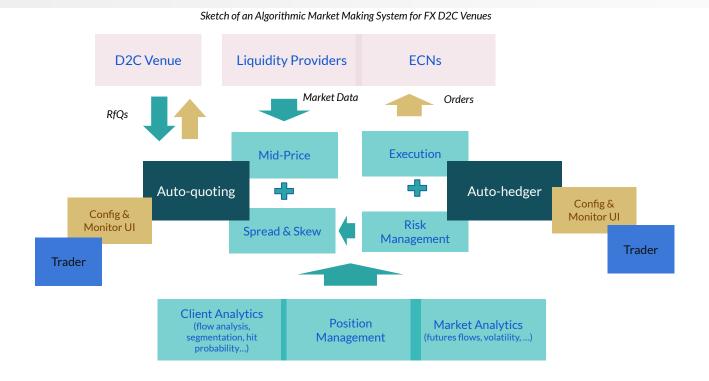

R(T-2), Imbalance (T-2), Buy (T-2) \rightarrow P&L R(T-1), Imbalance (T-1), Wait(T-1) \rightarrow P&L



Value[R(T), Imbalance (T), Buy] Value[R(T), Imbalance (T), Wait]

/ Blending Knowledge and Data Driven AI: Agent Driven Generative





/ Example of Agent Driven AI in The Financial Markets: **Anomaly**

Detection

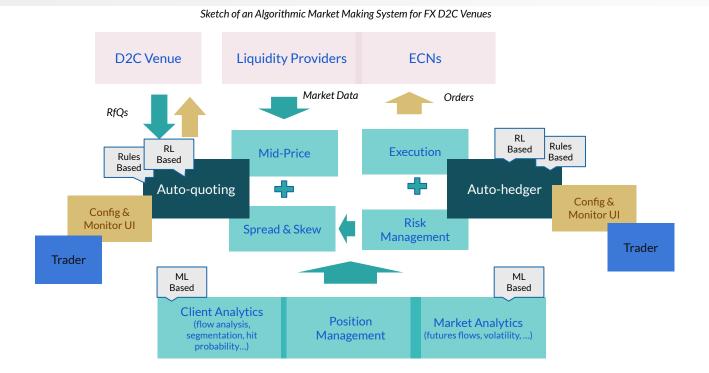
/ FX Trading & Sales Applications: Algorithmic Trading

Rules Based Systems

Based on trading heuristics or mathematical optimization (e.g. Avellaneda-Stoikov framework)

Machine Learning Systems

Complement rules based systems with ML driven indicators: probability of hit, flow prediction, volatility prediction...


Deep Reinforcement Learning Systems Rules Systems are replaced by a trading strategy learnt from <u>trading simulations</u> driven by P&L and Risk "rewards"

Agent Driven AI Systems

Blend expert knowledge via prompts with LMM reasoning and repurposed previous systems as tools: rules-based, ML based, DRL based

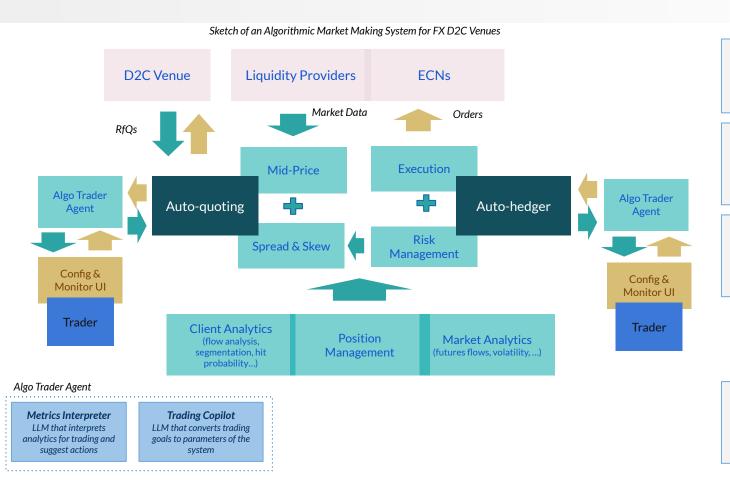
/ FX Trading & Sales Applications: Algorithmic Trading

Rules Based Systems

Based on trading heuristics or mathematical optimization (e.g. Avellaneda-Stoikov framework)

Machine Learning Systems

Complement rules based systems with ML driven indicators: probability of hit, flow prediction, volatility prediction...


Deep Reinforcement Learning Systems Rules Systems are replaced by a trading strategy learnt from <u>trading simulations</u> driven by P&L and Risk "rewards"

Agent Driven AI Systems

Blend expert knowledge via prompts with LMM reasoning and repurposed previous systems as tools: rules-based, ML based, DRL based

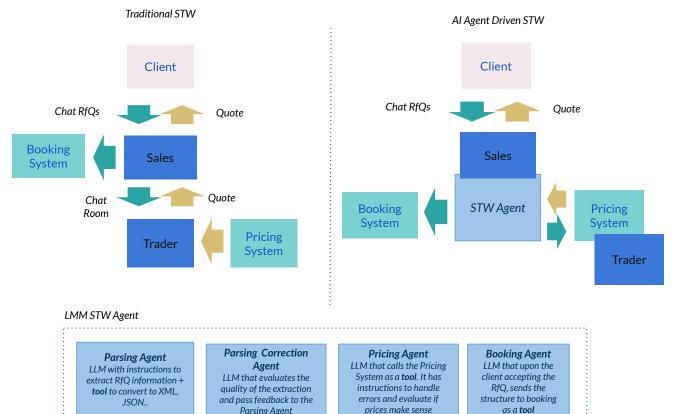
/ FX Trading & Sales Applications: Algorithmic Trading

Rules Based Systems

Based on trading heuristics or mathematical optimization (e.g. Avellaneda-Stoikov framework)

Machine Learning Systems

Complement rules based systems with ML driven indicators: probability of hit, flow prediction, volatility prediction...


Deep Reinforcement Learning Systems Rules Systems are replaced by a trading strategy learnt from <u>trading simulations</u> driven by P&L and Risk "rewards"

Agent Driven AI Systems

Blend expert knowledge via prompts with LMM reasoning and repurposed previous systems as tools: rules-based, ML based, DRL based

/ FX Trading & Sales Applications: Sales Trader Workflow (STW)

Rules Based Systems

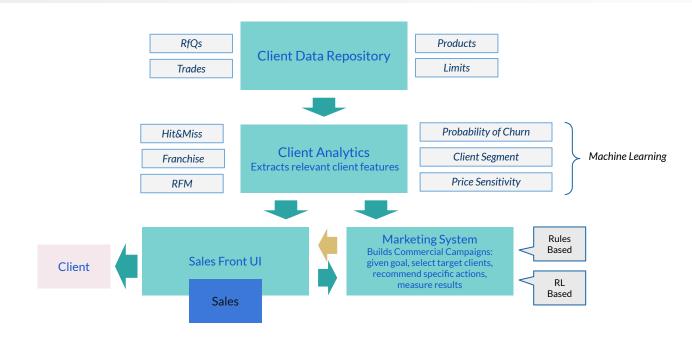
Parsing rules to extract information from chats

Machine Learning Systems

Natural Language Processing (NLP) Machine Learning models

Generative Al

GPT like models with expert prompt to extract relevant information, human supervised



Agent Driven Al Systems

Full autonomous system with a self criticism layer and response to errors

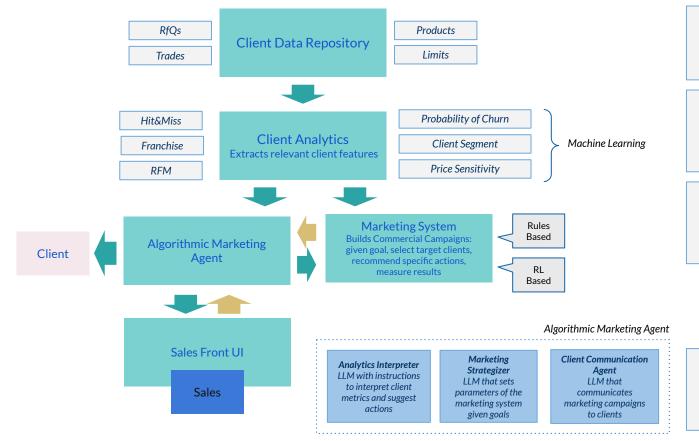
Parsing Agent

/ FX Trading & Sales Applications: Algorithmic Marketing

Rules Based Systems

Heuristic rules to alert of client activity Heuristic rules to segment clients

Machine Learning Systems Churn prediction, client clustering, product recommendation


Deep Reinforcement Learning Systems Generate next best commercial action based on context

Agent Driven AI Systems

End-to-end commercial campaigns, handling (written) communications

/ FX Trading & Sales Applications: Algorithmic Marketing

Rules Based Systems

Heuristic rules to alert of client activity Heuristic rules to segment clients

Machine Learning Systems Churn prediction, client clustering, product recommendation

Deep Reinforcement Learning Systems Generate next best commercial action based on context

Agent Driven AI Systems

End-to-end commercial campaigns, handling (written) communications

Black-box

- The lack of understanding of AI operations can lead to unpredictable and potentially detrimental outcomes. This opacity could jeopardise accountability.
- Nonbanks may be better placed to use them due lo a lighter supervisory regime.

Third parties dependencies and concentration

- Al services currently concentrated in a handful of providers. This creates strong interdependencies
 potentially as critical as some financial market infrastructures (FMIs)
- Potential to exacerbate market procyclicality and volatility

<u>Cyber</u>

Al might increase the financial markets' vulnerability due to cyber threats.