TIME FOR A NEW ASTROLABE?

KRISTIN FORBES MIT-SLOAN SCHOOL OF MANAGEMENT, NBER & CEPR

Panel on the Macroeconomics of Wage and Price Setting

ECB Forum on Central Banking

Sintra, Portugal

Prince Henry and a Portuguese Astrolabe

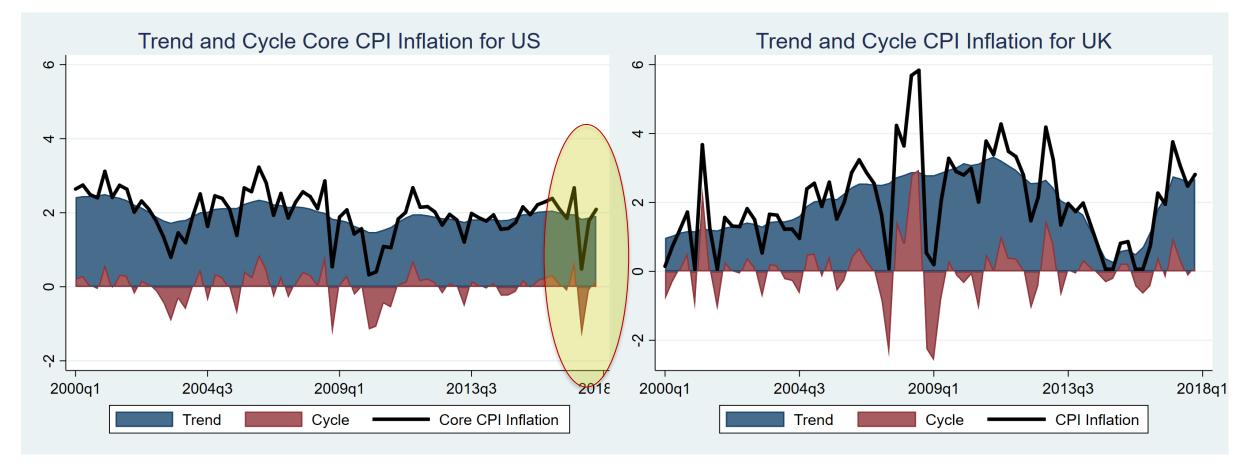
Henry the Navigator

Mariner's Astrolabe, Portuguese, 1645, by Nicholao Ruffo, The Mariners' Museum, (2000.52.1)

Prince

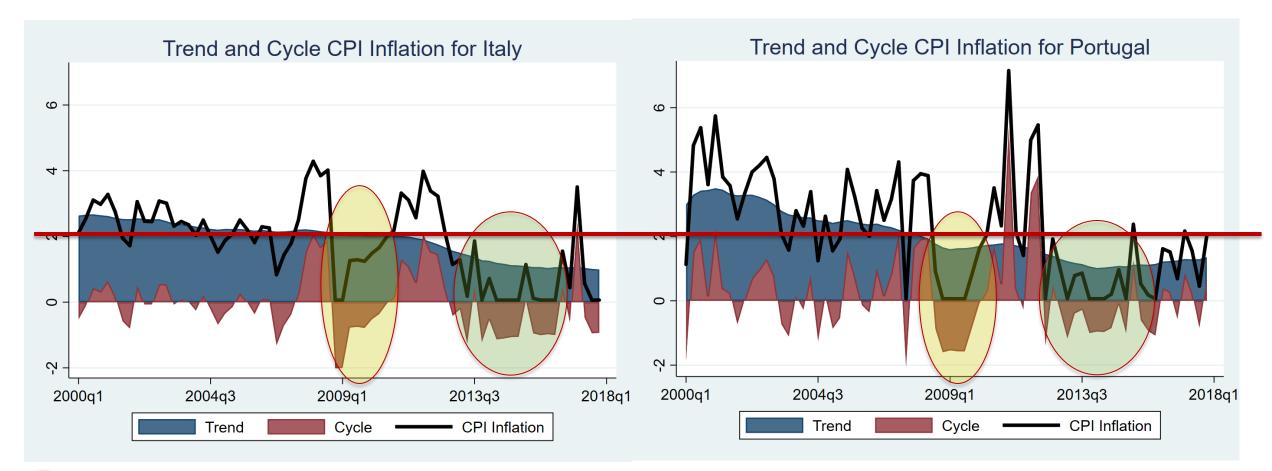
Trend-Cycle Analysis

Uses time-series to separate inflation into 2 components

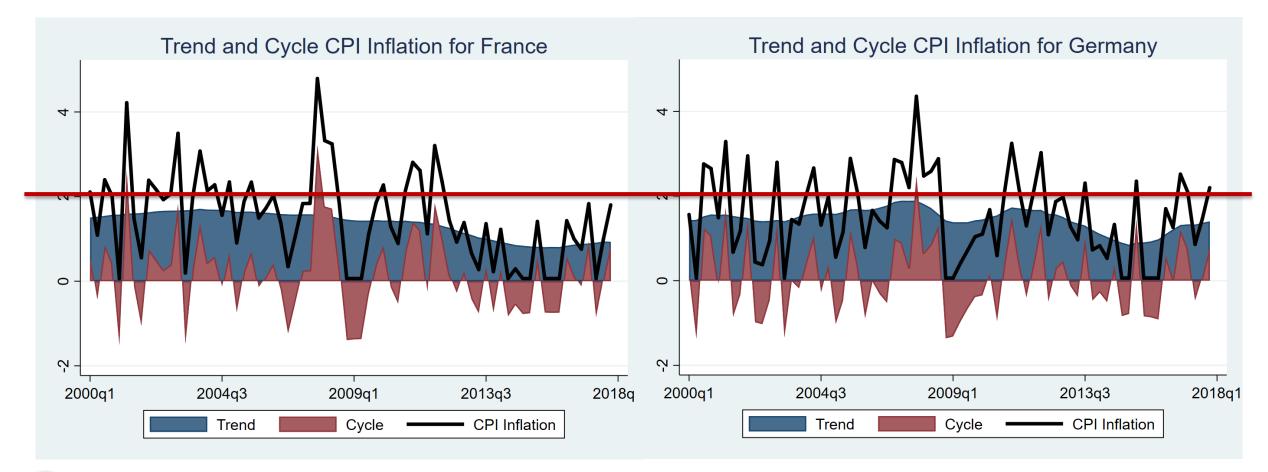

- 1. slow-moving and persistent "trend"
- 2. temporary, cyclical movements around the trend
- Minimal assumptions & parameterization
- Flexibility over time

The Model:

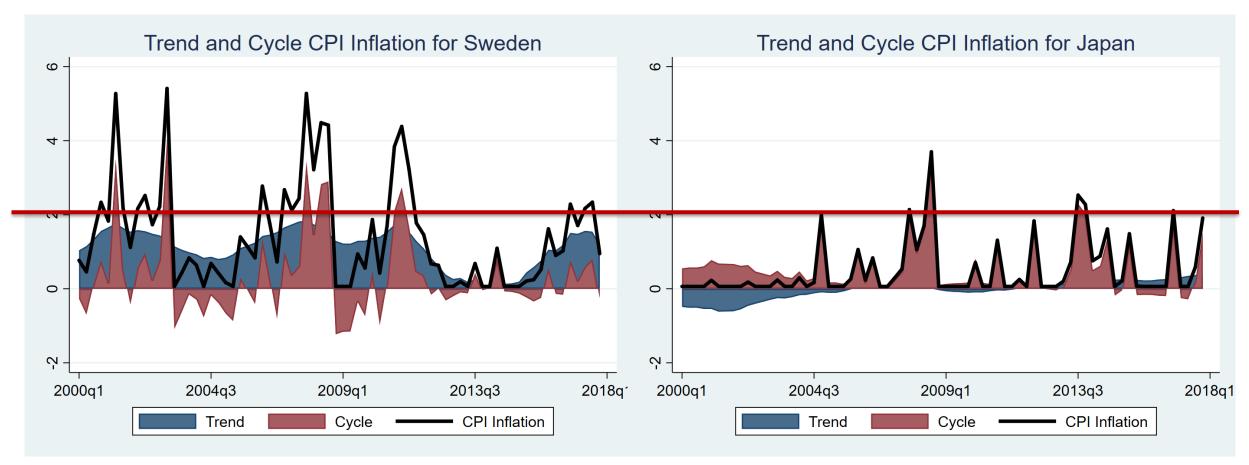
- "ARSV" model developed in Forbes et al. (2017)
- Combination of UCSV model in Stock and Watson (2007) & auto-regressive (ARUC) model in Chan, Coop and Potter (2013) and Cecchetti *et al.* (2017)
- Allows trend to follow unit root $(\tau_t = \tau_{t-1} + \varepsilon_t)$ and captures the autoregressive process in deviations around trend as well as the stochastic volatility observed in the inflation data



Trend-Cycle Decomposition: US & UK



Trend-Cycle Decomposition: Italy & Portugal



Trend-Cycle Decomposition: France & Germany

Trend-Cycle Decomposition: Sweden & Japan

The Disconnect?

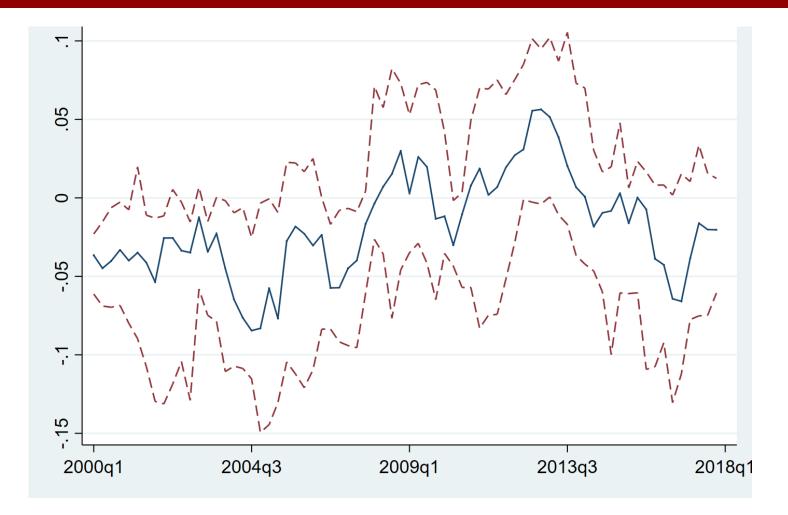
Several potential explanations:

- Measurement of inflation (Stock and Watson, 2018)
- Measurement of slack (Albuquerque and Baumann, 2017, Hong et al., 2018)
- Inflation expectations (Coibion and Gorodnichenko, 2015)
- Credibility of central banks (Miles et al., 2017)
- Global slack (Borio and Filardo, 2007)

Changes in global economy

- Increased trade flows
- Greater role of emerging markets/impact on commodity prices
- Greater use of supply chains (Auer, Levchenko and Sauré, 2016)

Regressions of quarterly, annualized inflation from 1990-2017 for 43 countries.


See Forbes (2018) for details.

	CPI Inflation	Core Inflation
Inflation	0.670***	0.462***
Expectations	(0.073)	(0.052)
Lagged	0.646***	0.704***
Inflation	(0.034)	(0.024)
Domestic	0.094***	0.084***
Output Gap	(0.017)	(0.012)
Real Exchange	-0.020***	-0.013***
Rate	(0.006)	(0.004)
World Output	0.072***	0.043***
Gap	(0.023)	(0.012)
World Oil	0.002***	0.001**
Prices	(0.001)	(0.000)
World Commodity	0.010***	0.003**
Prices	(0.002)	(0.001)
World PPI	0.114***	0.019
Dispersion	(0.034)	(0.028)
Adj. R2	0.55	0.63
# observations	3002	3038

But important differences across individual countries

Changes across Time: Rolling Coefficient on Exchange Rate

Median coefficient from rolling regressions using 8year windows for quarterly, annualized CPI inflation from 1990-2017, estimated separately for each country. Dashed lines are the 33% and 66% of the distribution. See Forbes (2018) for more details.

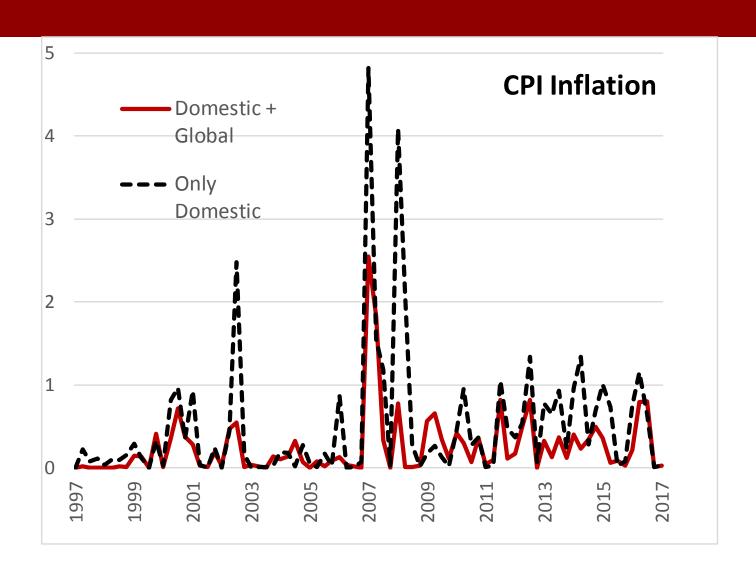
Changes across Time: Rolling Coefficient on Commodity Prices

Commodity
price inflation
measured
relative to CPI
inflation

Median coefficient from rolling regressions using 8year windows for quarterly. annualized CPI inflation from 1990-2017, estimated separately for each country. Dashed lines are the 33% and 66% of the distribution. See Forbes (2018) for more details.

Changes across Time: Core Inflation Rolling Coefficient on Domestic Output Gap

Domestic
output gap
measured by
principal
component of
7 measures of
slack



Median coefficient from rolling regressions using 8year windows for quarterly, annualized CPI inflation from 1990-2017, estimated separately for each country. Dashed lines are the 33% and 66% of the distribution. See Forbes (2018) for more details.

Global Variables: Reduce Errors

Median of squared difference between actual and predicted inflation in model estimated for each country with and without global variables

Regressions of quarterly, annualized inflation from 1990-2017 for 43 countries. Post is period 2007-2017.

	CPI Inflation	Core Inflation
Inflation Expectations	0.592***	0.416***
Lagged Inflation	0.682***	0.750***
Domestic Output Gap	0.115***	0.116***
Real Exchange Rate	-0.025***	-0.018***
World Output Gap	0.027	0.037
World Oil Prices	0.002***	0.001**
World Commodity Prices	0.002	0.002
World PPI Dispersion	0.301***	0.012
Post * Inflation Expectations	0.188**	0.165***
Post * Lagged Inflation	-0.116	-0.154***
Post * Domestic Output Gap	-0.052	-0.078**
Post *Real ER	0.008	0.008
Post * World Output Gap	0.122**	0.044
Post * World Oil	0.000	0.000
Post * World Commodities	0.014***	0.001
Post * World PPI Dispersion	-0.322***	0.008
Adj. R2	0.56	0.63
# observations	3002	3038
Global variables jointly signif?	154.3***	40.0***

See Forbes (2018) for details.

Conclusions

- Global factors should be included more comprehensively in inflation models
 - Allow parameters to evolve over time
- Which global factors are most important?
 - Exchange rates important, but roles of different factors varies across countries and time
 - Over last decade increased role for: commodity prices, global slack
 - Especially for CPI inflation
 - In some countries: decreased role of domestic slack
 - Especially in advanced economies with own currencies
- Don't throw out the astrolabe
 - Key variables in inflation model still relevant

