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How does Lack of Commitment Interact with Inflation Dynamics?

• Commitment to inflation targeting is a hallmark of modern central banking

• Limitations of previous literature on central bank credibility
• e.g. Barro-Gordon 83 and Rogoff 85
• No connection to underlying economic parameters
• No transitional dynamics
• No quantitative implications

• This paper: Lack of commitment in the New Keynesian model
Requires dynamic, non-linearized framework
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Preview of Model

• Deterministic non-linear NK model with Calvo pricing
• Firms underproduce and underhire because of monopoly power w/o stimulus
• Price dispersion with labor misallocated to low-price varieties with stimulus

• Monetary Non-Neutrality
• ↑ inflation =⇒ ↑ dispersion (misallocation), ↓ monopoly distortions

• Markov Perfect Competitive Equilibrium: CB optimizes at every date
• CB undoes monopoly distortion, sets labor share to 1 (MRS = MPL)
• Model reduces to three equations:

• Forward-looking Phillips curve + pass-through of real wage to inflation
• Backward-looking dispersion dynamics equation
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Main Results

• Economic environment drives long-run inflation
• ↑ labor wedge or ↓ elasticity of substitution =⇒↑ inflation
• Driven by interaction of environment with lack of commitment

• Inflation overshoots in transition to high-inflation steady state
• Driven by evolution of CB incentives as dispersion increases

• Quantitative magnitudes are large
• Small shocks =⇒ Large change in inflation, significant overshooting
• Loss due to lack of commitment (versus targeting) is high
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Related Literature

• Linearized models of central bank credibility
• Barro-Gordon 83, Rogoff 85, Athey-Atkeson-Kehoe 05, Halac-Yared 20,22
• This paper: Transition dynamics, quantitative implications

• Credibility in non-linear environments without dispersion
• Alvarez-Kehoe-Neumeyer 04, Davila-Schaab 23
• This paper: Focus on dispersion and inflation-output tradeoff

• Non-linear models of central bank credibility
• Albanesi-Chari-Christiano 03, King-Wolman 04, Zandweghe-Wolman 19
• This paper: Theoretical analysis of non-linear Calvo model

• Non-linear models of optimal commmitment policy
• Benigno-Woodford 05, Yun 05
• This paper: No commitment, recursive auxiliary variable
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Model



Household Problem

max
Ct,Lt,Bt,(sj,t,Cj,t)j∈[0,1]

∞∑
t=0

βt

(
log(Ct)−

L1+ψt
1+ ψ

)

subject to∫ 1

0
Pj,tCj,tdj+ Bt ≤ WtLt + (1+ it−1)Bt−1 +

∫ 1

0
sj,tXj,tdj+

∫ 1

0
(sj,t−1 − sj,t)PSj,tdj− Tt,

where Ct =
(∫ 1

0
C1−σ−1

j,t dj
) 1

1−σ−1
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Optimality Conditions

• Allocation across varieties:

Cj,t = Ct
(Pj,t
Pt

)−σ
where Pt =

(∫ 1

0
P1−σj,t dj

) 1
1−σ

• Intertemporal and intratemporal conditions:

Wt
Pt

= CtLψt and 1 = β(1+ it)
PtCt

Pt+1Ct+1

• Firm pricing:

PSj,t =
∞∑
h=0

βh
PtCt

Pt+hCt+h
Ejt[Xj,t+h] + lim

h→∞
βh

PtCt
Pt+hCt+h

Ejt[P
S
j,t+h]

• In the paper: A TVC as a sufficient condition for the lim term to vanish
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Firm Problem

• Initial prices Pj,−1. Can change in every period with probability 1− θ

• Objective to maximize

PSj,t =
∞∑
h=0

βh
PtCt

Pt+hCt+h
[
Pj,tYj,t − (1+ τ)WtLj,t

]
where Lj,t = Yj,t

after substitution

max
P∗t

∞∑
h=0

(βθ)h
PtCt

Pt+hCt+h
[P∗t − (1+ τ)Wt+h]Ct+h

(
P∗t
Pt+h

)−σ

Assumption

τ > −1/σ
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Government

• CB sets it to maximize social welfare

• Fiscal authority sets Tt and Bt

• Government budget constraint

(1+ it−1)Bt−1 = Bt + Tt + τWtLt
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Order of Events

1. Flexible firms choose Pj,t = P∗t . Sticky firms choose Pj,t = Pj,t−1

2. CB chooses it

3. Households choose Ct, Lt,Bt, (si,t, Cj,t)j∈[0,1]

4. Fiscal authority chooses Tt and Bt
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Markov Perfect Competitive Equilibrium

• All decisions are functions of minimal payoff relevant variables
• Ricardian Equivalence =⇒ wlog, set Bt = 0 at every t (not payoff relevant)

• Strategies:
• Flex-price firms at t choose P∗t as a function of price distribution Ωt−1

• This determines Ωt

• Central bank chooses it as a function of Ωt

• Households make decisions as a function of Ωt and it

• An MPCE is a collection of all of these mappings
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Competitive Equilibrium



Aggregate Production

• Aggregate production: labor market clearing and yj,t = lj,t = Yt(Pj,t/Pt)−σ

Lt =
∫ 1

0
lj,tdj =

∫ 1

0
yj,tdj = Yt

∫ 1

0
(Pj,t/Pt)−σdj

• Define price (markup) dispersion as Dt ≡
∫ 1
0 (Pj,t/Pt)

−σdj:

Dt ≥ 1 =⇒ Yt =
Lt
Dt

≤ Lt (misallocation)

• Using household’s labor supply, real wage and labor share are

labor share : µt ≡
WtLt
PtYt

=
MRSt
MPLt

= L1+ψt

real wage : Wt
Pt

= µtYt/Lt = µt/Dt
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Dispersion Dynamics

• Letting Πt = Pt/Pt−1, dispersion follows

Dt = (1− θ)

(
1− θΠσ−1t
1− θ

) σ
σ−1

+ θΠσt Dt−1 (DD)

• Two forces:
• Inflation leaves sticky price firms behind→ More dispersion across firms
• All flex price firms choose P∗t → Less dispersion within flex price firms

• For Πt > 1, first force dominates
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Non-Linear Phillips Curve

• Flex-price firm optimality yields non-linear Phillips Curve:(
1− θΠσ−1t
1− θ

) 1
1−σ

=
σ(1+ τ)

σ − 1
δt
µt
Dt

+(1− δt)Πt+1

(
1− θΠσ−1t+1
1− θ

) 1
1−σ

(NLPC)

where δt is an aux. variable capturing wage pass-through dynamics (WPD):

δ−1t = 1+ βθΠσ−1t+1 δ
−1
t+1 (WPD)

• Two forces:
• Higher current real wages→ Higher current inflation
• Higher future inflation→ Higher current inflation

• Nature of time inconsistency: Πt+1 and δt+1 affect allocation at t.
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Long-Run Monetary Non-Neutrality

Lemma

Consider hypothetical steady state {Π,D, µ} for Π ∈ [1, θ−1/σ). D and µ are
unique and increasing in Π.

• Mechanism: If ↑ Π, then
• ↑ D since more sticky price firms left behind
• ↑ µ since more overhiring by sticky price firms

• Not fully counterbalanced by flex-firm price increases since β < 1

• Implications:
• Steady state tradeoff between dispersion and monopoly distortions

• Zero inflation/dispersion steady state is distorted (τ > −1/σ)
• Inflation dynamics not pinned down by model

• Immediate transition from one steady state inflation to another possible
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Equilibrium Policy



Central Bank Problem with Commitment

• Recall L1+ψt = µt and ln(Ct) = − ln(Dt) + ln(µt)/(1+ ψ) :

ln(Ct)−
L1+ψt
1+ ψ

= − ln(Dt) +
ln(µt)− µt
1+ ψ

• The central bank—with commitment to Πt and δt—solves:

W (Dt,Πt, δt) = max
Dt+1,Πt+1,δt+1,µt

{
− ln(Dt) +

ln(µt)− µt
1+ ψ

+ βW (Dt+1,Πt+1, δt+1)
}

s.t.
NLPC, DD, WPD

Lemma

In any steady state, Πt = 0.

• Intuition: No long-run intertemporal distortions
• Implication: Economic environment does not affect long-run inflation
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Central Bank Problem without Commitment

• Central bank objective

V (Dt) = − ln(Dt) +
ln(µt)− µt
1+ ψ

+ βV(Dt+1)

• Since Dt+1, Πt+1, and Dt are predetermined, FOC yields µt = 1 (MRSt = MPLt)
• Stimulate labor share to 1 from its inefficient level due to monopoly distortions

• Remarks
• CB does not internalize policy’s impact on Dt
• CB reaction function: 1+ it = 1

βΠt+1Yt+1Dt. Stimulus declines in Dt
• CB’s policy is independent of underlying price-setting model
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System of Equations

• Dispersion dynamics

Dt = (1− θ)

(
1− θΠσ−1t
1− θ

) σ
σ−1

+ θΠσt Dt−1

• Phillips curve (substituting CB reaction function)(
1− θΠσ−1t
1− θ

) 1
1−σ

=
σ(1+ τ)

σ − 1
δtD−1

t +(1− δt)Πt+1

(
1− θΠσ−1t+1
1− θ

) 1
1−σ

for δ−1t = 1+ βθΠσ−1t+1 δ
−1
t+1

• To facilitate analysis, consider continuous-time limit of model
• Define πt ≡ d log Pt/dt (rate of inflation) and λ ≡ − ln(θ) (Poisson arrival rate)
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System of Equations: Continuous Time Limit

• Dispersion dynamics and the Phillips curve:

Ḋt = λ

(
1− σ − 1

λ
πt

) σ
σ−1

− (λ− σπt)Dt

π̇t = −λσ(1+ τ)

σ − 1

(
1− σ − 1

λ
πt

) σ
σ−1 δt

Dt
+ (δt − πt)(λ− (σ − 1)πt)

δ̇t = δ2t + [(σ − 1)πt − (ρ+ λ)]δt

• Consolidated dynamical system for Xt = (Dt, πt, δt):

Ẋt = f (Xt) =⇒ 0 = f (Xss)

• Prove Xss is hyperbolic =⇒ Hartman-Grobman and Stable Manifold Thms
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Steady State

Proposition

There is a unique steady state {D, π}. Moreover,
• ↑ τ (labor wedge) =⇒ ↑ D and ↑ π
• ↓ σ (elasticity of substitution) =⇒ ↑ D (if τ low enough) and ↑ π

• Intuition. Take economy with τ = −1/σ and increase τ
• Under inflation targeting (IT), economy jumps to lower labor share
• IT not incentive compatible =⇒ CB wants to stimulate
• Flex-price firms anticipate higher stimulus and raise prices
• Sequential price increases by flex-price firms raise dispersion
• Benefit of stimulating the economy decreases as dispersion ↑ and MPL ↓
• Stimulus ends at higher inflation/dispersion steady state

• Analogous logic starting from other τ and for changes in σ

19
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Transition Dynamics

Proposition

Take economy at steady state at t0. In transition to new steady state {D′, π′}
following unanticipated permanent increase in τ or decrease in σ (for low
enough τ ), inflation overshoots (i.e., there exists t′ ≥ t0 with πt > π′ ∀t > t′)

• Result proved by analyzing the three-dimensional non-linear system
• Saddle-path stability with a one-dimensional stable saddle-path
• Special case: σ → 1 while adjusting τ to hold markup σ(1+τ)

σ−1 fixed
=⇒ δt = δss,∀t ≥ 0 and the system is two-dimensional phase diagram
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Phase Diagram
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Phase Diagram: Unanticipated Increase in Labor Wedge
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Special Case of σ → 1

• Closed-form solution =⇒ inflation and log-dispersion decay at the rate of λ:

lnDt = lnDss − ln

(
Dss
D0

)
e−λt

πt = πss + λ ln

(
Dss
D0

)
e−λt

• Saddle path:

π(D) = πss − λ (lnD− lnDss)

• Cumulative overshooting of inflation along the transition path:∫ 1

0
(πt − πss)dt = ln

(
Dss
D0

)
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Quantitative Implications

Table 1: Parameters

Parameter Value Target

Discount factor, β (1.02)−1/12 2% annual real interest rate

Fraction of sticky-price firms, θ 0.86 Nakamura and Steinsson (2008)

Elasticity of substitution, σ 7 Coibion, Gorodnichenko, and Wieland (2012)

Inverse Frisch elasticity, ψ 2.5 Chetty, Guren, Manoli, and Weber (2011)

Labor wedge, τ −0.1427 2% annual inflation without commitment
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Unanticipated Increase in Labor Wedge

Figure 1: Response to Unanticipated Increase in Labor Wedge
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Unanticipated Decrease in Elasticity of Substitution

Figure 2: Response to Unanticipated Decrease in Elasticity of Substitution
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Inflation Targeting Versus No Commitment

Table 2: Inflation Targeting versus No Commitment

Scenario Welfare under
Targeting

Welfare under
No Commitment

Welfare
Difference

Labor Wedge Shock 0.981 0.922 0.059
Elasticity of Substitution Shock 0.981 0.921 0.060
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Discussion of Quantitative Magnitudes

• Large magnitudes are a robust feature of the model
• Emerge because long-run Phillips curve is almost vertical

µ =
σ − 1

σ(1+ τ)

[
1+ (1− β)

θΠσ−1(Π− 1)
(1− θΠσ)(1− βθΠσ−1)

]

• Small changes in τ → Large changes in Π (to keep µ fixed)
• Implications for models with flatter long-run Phillips curves

• Smaller magnitudes in response to shocks
• Smaller value of commitment to inflation targeting
• Meaningful economic benefits from increasing long run inflation
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Conclusion



Conclusion

• Analysis of lack of commitment in non-linear NK model
• Long-run and transition dynamics in response to permanent shocks

• Framework for interpreting past and future inflation (Afrouzi et al, 2024)
• Tailwinds that drove inflation down: globalization, Washington consensus
• Headwinds likely driving it up: deglobalization, industrial policy

• Framework for assessing the value of commitment
• Commitment to IT quantitatively large
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