The Search Costs of Inflation

Laura Pilossoph¹ Jane M. Ryngaert² Jesse Wedewer¹

¹Duke ²University of Notre Dame

European Central Bank Annual Research Conference September 2024

- Longstanding question in macro: What are the costs of inflation π ?
 - High levels of expected inflation will reduce welfare primarily through menu costs.
 - An unexpected, temporary inflationary shock will primarily influences welfare through redistribution.

- Longstanding question in macro: What are the costs of inflation π ?
 - High levels of expected inflation will reduce welfare primarily through menu costs.
 - An unexpected, temporary inflationary shock will primarily influences welfare through redistribution.
- Menu cost models used widely by CBs imply that costs from inflation are "elusive" (Nakamura et al. (2018))

This Paper

▶ What is the cost of inflation in the labor market?

- ▶ Workers perceive inflationary shocks as negative shocks to their real wages. (Shiller (1997), Stancheva (2024))
- Workers may respond by intensifying their search for other jobs to obtain a wage adjustment. (Pilossoph and Ryngaert (2024))
- Search comes at a cost.

This Paper

▶ What is the cost of inflation in the labor market?

- ▶ Workers perceive inflationary shocks as negative shocks to their real wages. (Shiller (1997), Stancheva (2024))
- Workers may respond by intensifying their search for other jobs to obtain a wage adjustment. (Pilossoph and Ryngaert (2024))
- Search comes at a cost.
- ▶ We develop a model to quantify the costs of (unexpected) inflation in the labor market:
 - ▶ Much of the welfare loss faced by workers is redistributive
 - ▶ Intensification of job search leads to a loss of net loss of welfare
 - ▶ This is ameliorated slightly as workers reallocate up the job ladder.

- \blacktriangleright Exogenous aggregate productivity z, grows deterministically at rate g
- \blacktriangleright Exogenous price level p, grows deterministically at rate g_p (in balanced growth path)
- Exogenous unit mass of vacancies of type y, F(y)
- Output is Y(z, y)

- ▶ Unit mass of workers, $i \in \{e, u\}$ employed and unemployed
- ► Make search effort decisions $\bar{s}_i \in (0, \bar{s})$, determines contact rate with openings, $s + \lambda_i$.

▶ real cost is c(s, z) > 0, with c'(s, z) > 0, $c''(s, z) \ge 0$

- ▶ Exogenous separation at rate δ
- $\blacktriangleright \text{ Real value of unemployment } B(z)$

Firms offer initial nominal hiring wage w that grows at rate $(1+g)(1+g_p)$

- \blacktriangleright w depends on employment status and current wage
- \blacktriangleright in absence of growth $g,g_p,$ similar to bargaining over real wage, fixed over match
- ▶ mimics COLA
- Renegotiated only by mutual consent
- ▶ Firms can make counteroffers, Bertrand competition ensues

- ▶ Values of unemployment and employment to worker and firm, $U\left(\cdot\right), W\left(\cdot\right), J\left(\cdot\right)$
- ▶ Firms make take-it-or-leave-it (TIOLI) offers to unemployed workers

Poaching and Contract Adjustments

- Consider worker currently with y_1 at nominal wage w when state is p, z, contacted by y_2 . Bertrand outcome:
 - no outbidding with same contract if $W(z'y_2, y_2, p', z') \leq W(w', y_1, p', z')$
 - **2** poaching firm hires worker if $y_1 < y_2$, new wage ϕ^{poach} satisfies $W\left(\phi^{\text{poach}}, y_2, p', z'\right) = W\left(z'y_1, y_1, p', z'\right)$
 - (a) incumbent firm keeps worker if $y_1 \ge y_2$, renegotiates new wage ϕ^{reneg} s.t. $W(\phi^{\text{reneg}}, y_1, p', z') = W(z'y_2, y_2, p', z')$
 - where $p' = p(1 + g_p), z' = (1 + g), w' = w(1 + g)(1 + g_p)$

▶ Define q(w', y, p', z'), first firm that triggers contract change:

$$W(w', y, p', z') = W(z'q, q, p', z')$$

Value of Employment W(w, y, p, z)

$$\begin{split} W\left(w,y,p,z\right) &= \max_{s \in [0,\bar{s}]} \frac{w}{p} - c\left(s,z\right) + \beta \delta U\left(z\left(1+g\right)\right) \\ &+ \beta \left(1-\delta\right)\left(s+\lambda_{e}\right) \int_{y}^{\bar{y}} W\left(\phi_{w}^{\text{poach}}\left(x,y,p',z'\right),x,p',z'\right) dF\left(x\right) \\ &+ \beta \left(1-\delta\right)\left(s+\lambda_{e}\right) \int_{q\left(w',y,p',z'\right)}^{y} W\left(\phi_{w}^{\text{reneg}}\left(y,x,p',z'\right),y,p',z'\right) dF\left(x\right) \\ &+ \beta \left(1-\delta\right) \left[\left(s+\lambda_{e}\right) \int_{\underline{Y}}^{q\left(w',y,p',z'\right)} dF\left(x\right) + 1 - s + \lambda_{e} \right] W\left(w',y,p',z'\right) dF\left(x,z'\right) dF\left(x,z'$$

where

$$p' = p(1+g_p)$$
$$z' = (1+g)$$
$$w' = w(1+g)(1+g_p)$$

Search and J2J Transitions

- Economy with (g, g_p^1) same as (g, g_p^2) with indexing
- ▶ Consider repeated, unanticipated shocks to the rate of inflation
- ▶ At some date τ , price level unexpectedly grows at rate $\hat{g}_p > g_p$
- ▶ Nominal wages already contracted to grow at rate $(1 + g)(1 + g_p)$, real wages grow at rate $\frac{(1+g)(1+g_p)}{1+\hat{g}_p} < 1 + g$

Unexpected Temporary Shock

Implementation

- begin economy in balanced growth path
- ▶ at dates $t \in (\tau, \tau + T)$, unanticipated inflation change from g_p to $g_p \varepsilon$, > 1
- at date $\tau + T + 1$, ε returns to 1
- ▶ Look at different outcomes:
 - real wages in existing/new matches
 - ▶ search effort among employed
 - ▶ worker/firm welfare relative to baseline

Unexpected Temporary Shock

Calculate flow value for each worker in case with inflation shock and case without inflation shock:

$$\tilde{w}_{i,t}^{case} = \left(\left(w_{i,t} - c(s_{i,t}) \right) * 1[emp_{i,t} = 1] + b * 1[emp_{i,t} = 0] \right)$$
(1)

▶ Measure of average flow value losses caused by shock in given period:

$$\frac{\mathbb{E}[\tilde{w}_{i,t}^{shock}|t=\tau] - \mathbb{E}[\tilde{w}_{i,t}^{no\ shock}|t=\tau]}{\mathbb{E}[\tilde{w}_{i,t}^{no\ shock}|t=\tau]}$$
(2)

Unexpected Temporary Shock: Flow Value loss

Unexpected Temporary Shock: Decomposition of Flow Value loss

Unexpected Temporary Shock: Flow Value loss

Unexpected Temporary Shock: Decomposition of Flow Value loss

- We develop a model in which search is endogenous to the real wage and real wages are allowed to erode with inflation.
- ▶ Larger set of outside firms can prompt wage renegotiation.
- ▶ This prompts search effort
 - Net cost of inflation
 - ▶ Reduced somewhat by reallocation of workers up job ladder.

- Nakamura, Emi, Jon Steinsson, Patrick Sun, and Daniel Villar, "The Elusive Costs of Inflation: Price Dispersion during the U.S. Great Inflation," *Quarterly Journal of Economics*, November 2018, 133, 1933 1980.
- Pilossoph, Laura and Jane Ryngaert, "Job Search, Wages, and Inflation," 2024.
- Shiller, R.J., "Why do people dislike inflation," in "Reducing inflation: Motivation and strategy," University of Chicago Press, 1997, pp. 13–70.

Stancheva, Stephanie, "Why do we dislike inflation?," 2024.

Past episodes	Beg	End	Cum. Price Δ		Avg. ann. inflation	
			Overall	Adj.	Overall	Adj.
COVID-19	Jan-21	Jan-23	14.4%	10.4%	6.9%	5.1%
OPEC Embargo	Jan-73	Jan-76	30.7%	24.6%	9.33%	7.6%
Late 1970s	Jan-78	Jan-81	39.1%	33%	11.6%	10%

Table 1: Comparison with Past Inflation Episodes

Average real wage

Search effort

Renegotiation rate (counter-offers)

EE transition rate

Average real wage growth - movers

Average real wage growth - stayers

Calibration

- ▶ Monthly calibration to pre-Covid US economy
- ► Set exogenously:
 - $\blacktriangleright~\beta = .9964$, 5% annual interest rate
 - ▶ g = .00042, annual TFP growth 0.5%
 - $\blacktriangleright \lambda_u = 0.31$
- ▶ Functional form assumptions:
 - $\blacktriangleright Y(z,y) = z \cdot y$
 - $\triangleright \ c(s,z) = z \cdot c_0 s^{\kappa}$
 - $\blacktriangleright \ B(z) = b \cdot z$
 - $y \sim \text{Beta}\left(\tilde{\alpha}, \tilde{\beta}\right)$ truncated between b and 1

► Allow for heterogeneity in job dest. rate: $\delta(y) = \delta_0 + \delta_1 y$

► Calibrate $\{b, c_0, \kappa, \lambda_e, \delta_0, \delta_1 \tilde{\alpha}, \tilde{\beta}\}$

Table 2: Parameters and Model Fit

Parameter	Value	Moment	Model	Data	Source
κ	2.15	$\frac{\partial s}{\partial \log \frac{w}{n}}$	-0.061	-0.063	FMST (2022)
c_0	60.79	$\frac{\lambda_e}{\lambda_u}^r$	0.229	0.237	FMST (2022)
λ_e	0.058	$\stackrel{\sim}{EE}$	0.0238	0.0241	FMPV (2021)
b	0.825	rep. rate	0.841	0.841	CK (2016)
δ_0	0.013	EU	0.014	0.013	BA(2021)
δ_1	-0.058	$\frac{\partial EU}{\partial \log \frac{w}{n}}$	-0.002	-0.0392	JK (2019)
$ ilde{lpha}$	10.4	Δw_{stayer}	0.059	0.039	GHY (2021)
$ ilde{eta}$	1.19	Δw_{mover}	0.068	0.08	GHY (2021)